Invariant forms, associated bundles and Calabi-Yau metrics

Diego Conti
Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano, Italy

Received 2 May 2007; received in revised form 13 August 2007; accepted 30 August 2007
Available online 14 September 2007

Abstract

We develop a method, initially due to Salamon, for computing the space of "invariant" forms on an associated bundle $X=P \times{ }_{G} V$, with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of Calabi-Yau metrics on $T \mathbb{C P}^{1}$ and $T \mathbb{C P}^{2}$.

(c) 2007 Elsevier B.V. All rights reserved.

MSC: 53C26; 53C30; 57S15; 68W30
Keywords: Vector bundle; Special geometry; Calabi-Yau; Symplectic cone

0. Introduction

This paper is motivated by the study of special geometries. A special geometry on a manifold X is a G-structure defined by one or more differential forms on X, so that

$$
G=\left\{g \in \mathrm{GL}(n, \mathbb{R}) \cong \mathrm{GL}\left(T_{x} X\right) \mid g \text { preserves the defining forms at } x\right\}
$$

for all x in X. Having fixed both G and the defining forms, the set of isomorphisms $\operatorname{GL}(n, \mathbb{R}) \cong \mathrm{GL}\left(T_{x} X\right)$ satisfying the above condition defines the G-structure as a reduction to G of the bundle of frames. The notion of special geometry also entails closedness, or more general differential relations among the defining forms. Calabi-Yau manifolds, or more generally manifolds with special holonomy, are examples of special geometries.

In practice, finding explicit examples of special geometries involves solving certain PDE's; to reduce the number of variables, one typically imposes extra symmetry conditions, assuming that a (compact) group of diffeomorphisms H preserves the G-structure. Then, about each special orbit, the manifold has the form of an associated bundle

$$
\begin{equation*}
X=H \times_{H_{x}} V . \tag{1}
\end{equation*}
$$

Thus, the defining forms are to be sought amongst invariant forms on an associated bundle. Notice that $H \rightarrow\left(H / H_{x}\right)$ is essentially an H_{x}-structure.

In this paper we develop a method, initially introduced by Salamon in [6,19], for computing the space of invariant forms on an associated bundle $X=P \times_{G} V$, associated with a generic G-structure P. Thus, we do not assume that the base manifold P / G is a homogeneous space.

[^0]This method consists in singling out certain local forms on X; in particular, one must choose suitable fibre coordinates a_{i}. A connection having been fixed, the tangent bundle $T X$ splits into a horizontal and a vertical distribution, and the local 1 -forms $\mathrm{d} a_{i}$ define forms b_{i} by projection on the vertical component. Whilst the a_{i} and b_{i} are not globally defined in themselves, they can be contracted to obtain globally defined forms, namely

$$
\sum_{i} a_{i} a_{i}, \quad \sum_{i} a_{i} b_{i}
$$

Moreover, one can usually find horizontal local forms β_{i} such that

$$
\sum_{i} a_{i} \beta_{i}, \quad \sum_{i} b_{i} \beta_{i}
$$

are globally defined forms. In this respect, the indexed objects a, b and β resemble the letters of an alphabet, which carry no meaning in themselves, but combine together to produce all the words of a dictionary. In the homogeneous case (1), it turns out that the elements of the dictionary are invariant under the global action of H.

The "dictionary" method was introduced in [19] as a collection of examples, more than a general method, nor was the notion of invariance investigated there. In this paper we give a definition of invariance for forms on X that generalizes the notion of H-invariant forms in the homogeneous case (1). In fact, we call these forms constant, since they can be read as constant maps from P to $\Omega\left(V, \Lambda^{*} \mathbb{R}^{n}\right)^{G}$; in particular, zero-degree constant forms can be identified with G-invariant functions on V. We prove that the space of constant forms is finitely generated as a module over the ring of zero-degree constant forms, and that one can generalize the dictionary method to obtain the full space of invariant forms from a finite number of "letters". We actually describe an algorithm for accomplishing this in an efficient way, at least for the case where G acts transitively on the sphere in V. As an application, we compute the space of invariant forms on $T \mathbb{C P}^{2}$, and obtain a two-parameter family of local Calabi-Yau metrics with conical Kähler form, generalizing the known conical hyper-Kähler example. This is achieved by considering an associated special geometry in seven dimensions, analogous to hypo-contact geometry in five dimensions [12], and constructing explicit examples on the sphere bundle in $T \mathbb{C P}^{2}$; an extension theorem of [9] completes the construction.

In order for the space of constant forms $\Omega\left(V, \Lambda^{*} \mathbb{R}^{n}\right)^{G}$ to be useful for constructing special geometries, one needs to compute how the operator dacts on its elements. In Lemma 8 we give a formula to this effect. From this formula, we deduce a sufficient condition for the algebra of constant forms to be d-closed, namely that both torsion and curvature be themselves constant. The case (1) trivially satisfies this condition (although, in this hypothesis, where "constant" coincides with "invariant", the result is also trivial). Conversely, assuming that d preserves the space of invariant forms, we show that the curvature must be constant, under the additional hypothesis that the infinitesimal action of G on V is effective. We obtain a weaker but similar result for the torsion.

The contents of this paper are organized as follows. Section 1 serves as an illustration of the dictionary method; it contains an elementary example from [20] concerning the associated bundle $T^{*} S^{2}$. In particular, a one-parameter family of complete hyper-Kähler metrics is constructed, giving a different characterization of the Kronheimer metrics on the resolution of $\mathbb{C}^{2} / \mathbb{Z}_{2}$ [17].

In Section 2, we show how forms over X can be viewed as sections of a vector bundle associated with P, with infinite-dimensional fibre $\Omega\left(V, \Lambda^{*} \mathbb{R}^{n}\right)$. We introduce the natural action of the gauge group on this space.

Constant forms are introduced in Section 3; they are characterized as forms that are both gauge invariant and parallel as sections of the associated bundle introduced in Section 2. The problem of whether the algebra of constant forms is d-closed is discussed here.

In Section 4 we show that the space of invariant forms is a finitely generated module over the ring of invariant functions on the fibre V, and we establish a criterion for determining whether a module of invariant forms coincides with the full space of invariant forms.

The formal definition of the dictionary is introduced in Section 5. This is done under the hypothesis that M is a homogeneous space, with no significant loss of generality, since the results of Section 3 lead one to assume that any two neighbourhoods are affine isomorphic. This section also contains a proof of the fact that one can always find a finite set of letters that generate the full space of invariant forms.

In Section 6 we describe an algorithm, valid in the cohomogeneity 1 case, for computing the dictionary generated by a certain set of letters, and thus check whether this dictionary is complete.

In Section 7 we apply the method to $T \mathbb{C P}^{2}$, finding explicit Calabi-Yau metrics on this space.

1. Invariant forms on $T^{*} S^{2}$

As an introduction to our general construction, we begin this paper with an elementary example, following [20]. Thus, we introduce a list of "invariant" forms on $T^{*} S^{2}$, and we use this list to obtain a one-parameter family of hyperKähler structures, containing in particular the Eguchi-Hanson metric [13]. We shall not go into detail concerning the relevant notion of invariance, nor give formal descriptions of the objects involved, since this will be the object of the sections to follow.

Let x_{1}, x_{2} be the coordinates on S^{2} given by stereographic projection, so that

$$
\beta_{1}=\frac{2}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+1} \mathrm{~d} x_{1}, \quad \beta_{2}=\frac{2}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+1} \mathrm{~d} x_{2}
$$

is an orthonormal basis for the standard metric, defined away from the north pole. Then the Levi-Civita covariant derivative gives

$$
\nabla \beta_{1}=\omega \otimes \beta_{2}, \quad \nabla \beta_{2}=-\omega \otimes \beta_{1},
$$

where ω is the connection form. In this setting, ω is just a local 1-form on S^{2}. Since the Levi-Civita connection is torsion-free, it follows that

$$
\mathrm{d} e^{1}=\omega \wedge \beta_{2}, \quad \mathrm{~d} \beta_{2}=-\omega \wedge \beta_{1}
$$

Explicitly,

$$
\omega=x_{2} \beta_{1}-x_{1} \beta_{2}
$$

and, consistently with the fact that the sphere has curvature 1 ,

$$
\mathrm{d} \omega=-\beta_{1} \wedge \beta_{2}
$$

The total space X of $\pi: T^{*} S^{2} \rightarrow S^{2}$ has a tautological 1-form τ; indeed, a point x of X is a 1-form on $T_{\pi(x)} S^{2}$, and one defines

$$
\tau_{x}=\pi^{*} x
$$

We can then introduce fibre coordinates a_{1}, a_{2} so that τ equals $a_{1} \pi^{*} \beta_{1}+a_{2} \pi^{*} \beta_{2}$. We shall implicitly pull the β_{i} back to X, and write

$$
\begin{equation*}
\tau=\sum_{i} a_{i} \beta_{i} \tag{2}
\end{equation*}
$$

Then

$$
\mathrm{d} \tau=\sum_{i} b_{i} \wedge \beta_{i} \quad \text { where }\left\{\begin{array}{l}
b_{1}=\mathrm{d} a_{1}-a_{2} \omega \\
b_{2}=\mathrm{d} a_{2}+a_{1} \omega
\end{array}\right.
$$

So at each point we have a basis of $T^{*} X$, given by $\beta_{1}, \beta_{2}, b_{1}, b_{2}$. Notice that the annihilator of $\left\langle b_{1}, b_{2}\right\rangle$ is nothing but the Levi-Civita horizontal distribution, showing that this construction depends on the choice of a connection in an essential way.

Whilst the objects a_{i}, b_{i} and β_{i} are only defined outside of the north pole, the form τ is defined globally, and so is of course $d \tau$. In fact, one can obtain a list of globally defined forms on X by contracting the "letters" a_{i}, b_{i} and β_{i} as in Eq. (2). Explicitly, the "words" of our dictionary are

$$
\begin{equation*}
\sum_{i} a_{i} a_{i}, \quad \sum_{i} a_{i} b_{i}, \quad \sum_{i} a_{i} \beta_{i}, \quad \sum_{i} b_{i} \beta_{i} \tag{3}
\end{equation*}
$$

where we have used componentwise product as a contraction,

$$
\begin{equation*}
a_{1} b_{2}-a_{2} b_{1}, \quad a_{1} \beta_{2}-a_{2} \beta_{1}, \quad b_{1} \beta_{2}-b_{2} \beta_{1} \tag{4}
\end{equation*}
$$

where we have used the determinant as a contraction, and the volume forms on fibre and base

$$
\begin{equation*}
b^{1} \wedge b^{2}, \quad \beta_{1} \wedge \beta_{2} \tag{5}
\end{equation*}
$$

which can also be obtained from a contraction using the determinant. The forms (3) have obvious interpretations: $\sum_{i} a_{i} a_{i}$ is the function r^{2}, given by

$$
r^{2}: X \rightarrow \mathbb{R}, \quad r^{2}(x)=\|\pi(x)\|^{2}
$$

and the others are $r \mathrm{~d} r, \tau$ and $\mathrm{d} \tau$. The forms (4) arise essentially from the fact that S^{2} coincides with $\mathbb{C P}^{1}$, so that one has a natural complex structure both horizontally and vertically.

Having this dictionary of forms at our disposal, we can look for special geometries on X. We obtain the following:
Theorem 1 ([17,20]). The total space of $T^{*} S^{2}$ has a one-parameter family of hyper-Kähler structures, defined by

$$
\begin{aligned}
& \omega_{1}=\left(k+r^{2}\right)^{1 / 2} \beta_{1} \wedge \beta_{2}-\left(k+r^{2}\right)^{-1 / 2} b_{1} \wedge b_{2} \\
& \omega_{2}=\beta_{1} \wedge b_{1}+\beta_{2} \wedge b_{2} \\
& \omega_{3}=\beta_{1} \wedge b_{2}-\beta_{2} \wedge b_{1},
\end{aligned}
$$

where k is a non-negative constant.
Proof. Having fixed coordinates on S^{2}, it is straightforward to check that the ω_{i} are closed. By [15], this implies that the ω_{i} are parallel and the structure is hyper-Kähler.

Notice that for $k=0$ the underlying metric is flat, and degenerate at the zero section; however, it can be made non-degenerate by replacing the zero section with a point. For $k=1$, we obtain the Eguchi-Hanson metric [13].

2. Gauge group actions

Let $p: P \rightarrow M$ be a principal bundle with compact fibre G, and let T be a representation of G such that

$$
P \times_{G} T \cong T M
$$

Although the results of this section do not require this hypothesis, we shall also assume, for simplicity, that G acts effectively on T; then P is a reduction of the bundle of frames on M, i.e. a G-structure. Now fix another G-module V, and let X be the total space of the associated vector bundle

$$
\underline{V}=P \times_{G} V .
$$

We are ultimately interested in constructing special geometries, by singling out "canonical" closed forms on X. As functions on M pull back to functions on X, the space of forms $\Omega(X)$ is an algebra over $C^{\infty}(M)$, clearly not finitely generated. In this section we shall obtain a first reduction of $\Omega(X)$ to a subalgebra that is, on the contrary, finitely generated over $C^{\infty}(M)$. This subalgebra arises as the space of forms that are invariant under a certain action of the gauge group.

By the definition of frame bundle, each point of P gives rise to an isomorphism $T \rightarrow T_{y} M$, and so of course $G \subset \mathrm{GL}(T)$ acts on P on the right. However, on each fibre P_{y} one also has a left action of G given by the inclusion in $\operatorname{GL}\left(T_{y} M\right)$. More precisely, consider the bundle $\underline{G}=P \times{ }_{G} G$, where G acts on itself by conjugation; the gauge group \mathcal{G}, as introduced in [1], is the space of its sections, to be denoted by the symbol \underline{g}. Indeed, the bundle map

$$
\begin{aligned}
& \underline{G} \boxtimes \underline{G} \rightarrow \underline{G} \\
& {[u, g] \times[u, h] \rightarrow[u, g h]}
\end{aligned}
$$

induces a group structure on \mathcal{G}. Then \mathcal{G} acts on P on the left by

$$
\underline{g} \cdot u=u g, \quad \text { where } \underline{g}_{p(u)}=[u, g] .
$$

In particular, \mathcal{G} acts on every bundle associated with P : if V is any G-space, i.e. a manifold with a smooth left G action, then the associated bundle $V=P \times_{G} V$ has a left \mathcal{G} action defined by

$$
\begin{equation*}
\Phi: \underline{G} \rightarrow \operatorname{End}(\underline{V}), \quad \Phi_{\underline{g}}[u, v]=[\underline{g} \cdot u, v] . \tag{6}
\end{equation*}
$$

The definition of this induced action only depends on the fact that \mathcal{G} acts on P; however, using the definition of \mathcal{G}, one can also regard the gauge group action as induced by the bundle map

$$
\begin{align*}
& \underline{G} \boxtimes \underline{V} \rightarrow \underline{V} \\
& {[u, g] \times[u, v] \rightarrow[u, g v] .} \tag{7}
\end{align*}
$$

In particular, the gauge group \mathcal{G} acts on X as a group of diffeomorphisms, and we could let \mathcal{G} act on $\Omega(X)$ accordingly. However, the notion of invariance that we wish to investigate deals with a different action, that reflects the fact that \mathcal{G} acts infinitesimally on M, beside acting on each fibre.

Before introducing this action, we need to introduce more language. Let $\pi: X \rightarrow M$ be the projection; then the pull-back to X of P is

$$
\pi^{*} P=P \times V,
$$

with principal G action given by

$$
(p, v) g=\left(p h, h^{-1} v\right)
$$

By choosing a connection on P we can make $\pi^{*} P$ into a G-structure on X. Indeed, fix a connection form ω and let θ be the tautological form on P, taking values in T. Given a vector space W, we denote by $\Lambda^{*} W$ the exterior algebra over W. Since G is compact, we can fix invariant metrics on T and V, identifying each with its dual accordingly; so, we shall make no distinction between, say, $\Lambda^{*} T$ and $\Lambda^{*}\left(T^{*}\right)$.

Lemma 2. The map

$$
\begin{align*}
& T(P \times V) \rightarrow \pi^{*} P \times(T \oplus V) \\
& \left(u, v ; u^{\prime}, v^{\prime}\right) \rightarrow\left((u, v),\left(\theta_{u}\left(u^{\prime}\right),-\omega_{u}\left(u^{\prime}\right) v+v^{\prime}\right)\right) \tag{8}
\end{align*}
$$

induces an isomorphism $T X \cong \pi^{*} P \times_{G}(T \oplus V)$. In the same way, one obtains an isomorphism

$$
\begin{equation*}
\Lambda(X) \cong \pi^{*} P \times_{G} \Lambda^{*}(T \oplus V) \tag{9}
\end{equation*}
$$

Notice that the identification (8) depends on the choice of a connection, and so does all of the construction to follow.

Now let \mathcal{G} act on the left on $\pi^{*} P=P \times V$ by

$$
\Psi: \mathcal{G} \rightarrow \operatorname{Diff}\left(\pi^{*} P\right), \quad \Psi_{\underline{g}}(u, v)=(u g, v) \quad \text { if } \underline{g}_{[u, v]}=[u, g] .
$$

Given a subset $A \subset M$, not necessarily open, let $X_{A}=\pi^{-1}(A)$. We let \mathcal{G} act on $\Gamma\left(X_{A}, \pi^{*} P\right)$ as follows:

$$
\begin{equation*}
\underline{g} \cdot s=\Psi_{\underline{g}}\left(s \circ \Phi_{\underline{g}-1}\right) . \tag{10}
\end{equation*}
$$

Unlike its action on P, this action of \mathcal{G} is only defined on sections. Therefore, there is no induced \mathcal{G} action on bundles associated with $\pi^{*} P$, but there is one such action on the space of their sections. Explicitly, we can extend the action Ψ to every associated bundle $\pi^{*} P \times_{G} Y$ by

$$
\Psi_{\underline{g}}[s, y]=\left[\Psi_{\underline{g}} s, y\right] .
$$

With this definition, (10) also applies to associated bundles. In particular, we have constructed an action of the gauge group on $\Omega(X)$.

We now show that $\Omega(X)$ can be expressed as the space of sections of a vector bundle over M associated with P, so that the action of \mathcal{G} on $\Omega(X)$ is the induced gauge action, in the sense of (6). Let Y be a G-space. Then G acts on the left on the space

$$
R=C^{\infty}(V, Y)
$$

of Y-valued functions on V; the action is given by

$$
(g r) v=g\left(r\left(g^{-1} v\right)\right)
$$

Fix a point y in M; then the fibre X_{y} consists of points [u, v], where v is in V and u is in P_{y}. Consider the map

$$
\begin{align*}
& \mu_{y}: \underline{R}_{y} \rightarrow \Gamma\left(X_{y}, \pi^{*} P \times_{G} Y\right) \\
& \mu_{y}([u, r])_{[u, v]}=[(u, v), r(v)] . \tag{11}
\end{align*}
$$

It follows from the definition of the action on G on R that this map does not depend on the choice of u. For every $U \subset M$, the μ_{y} combine to give a map

$$
\mu_{U}: \Gamma(U, \underline{R}) \rightarrow \Gamma\left(X_{U}, \pi^{*} P \times_{G} Y\right) .
$$

The gauge group acts on both sides, by (7) and (10) respectively.
Proposition 3. The maps μ_{U} are \mathcal{G}-equivariant isomorphisms.
Proof. It is sufficient to prove the statement for each map μ_{y}. It is straightforward to show that μ_{y} is an isomorphism. Let \underline{g} be an element of the gauge group with $\underline{g}_{y}=[u, g]$; its action on \underline{R}_{y} satisfies

$$
\mu_{y}(\underline{g}[u, r])_{[u, g v]}=\mu_{y}([u g, r])_{[u g, v]}=[u g, r(v)] .
$$

On the other hand

$$
\Psi_{\underline{g}} \mu_{y}(\underline{g}[u, r]) \circ \Phi_{\underline{g}-1}:[u, g v] \rightarrow \Psi_{\underline{g}} \mu_{y}(\underline{g}[u, r])[u, v]=\Psi_{\underline{g}}[u, r(v)]=[u g, r(v)],
$$

and so μ_{y} is equivariant.
There are some special cases of Proposition 3 worth mentioning.

- $Y=G$ with the G action induced by left multiplication. Then $\pi^{*} P \times_{G} G$ can be identified with $\pi^{*} P$. Thus, we see that the gauge action on sections of $\pi^{*} P$ is induced by the standard gauge action on $C^{\infty}(V, G)$ via the isomorphisms μ_{U}.
- $Y=\mathbb{R}$. Then Proposition 3 allows us to identify smooth functions on X with sections of $C^{\infty}(V)$.
- $Y=T \oplus V$. Then $\pi^{*} P \times_{G} Y$ is the tangent bundle $T X$, and vector fields on X can be identified with sections of $C^{\infty}(V) \otimes(T \oplus V)$.
 $\Lambda^{*} T$-valued differential forms on V in a G-equivariant way. Notice that we are thinking of V as a manifold when writing $\Omega(V)$, but we shall refrain from calling $\Lambda(V)$ the bundle of differential forms over V, which could lead to some confusion. Summing up, we have constructed an equivariant isomorphism

$$
\mu_{M}: \Gamma\left(\underline{\Omega\left(V \otimes \Lambda^{*} T\right)}\right) \rightarrow \Omega(X) .
$$

Corollary 4. Under the identification μ_{M}, the action of \mathcal{G} on $\Omega(X)$ is given by

$$
[u, g][u, \alpha \otimes \beta]=[u, g \alpha \otimes g \beta] .
$$

In particular, the space of invariant forms is

$$
\Omega(X)^{\mathcal{G}}=C^{\infty}(M) \otimes_{\mathbb{R}} \mu_{M} \Omega\left(V, \Lambda^{*} T\right)^{G}
$$

Proof. By construction,

$$
[u, g][u, \alpha \otimes \beta]=[u g, \alpha \otimes \beta]=[u, g \alpha \otimes g \beta],
$$

proving the first part of the theorem. As a consequence, the space of invariant forms is the image under μ_{M} of

$$
\Gamma\left(P \times_{G}\left(\Omega\left(V, \Lambda^{*} T\right)^{G}\right)\right) .
$$

On the other hand, $\Omega\left(V, \Lambda^{*} T\right)^{G}$ is a trivial bundle, because by construction the structure group G acts trivially on its fibre. Therefore

$$
\Gamma\left(\underline{\Omega\left(V, \Lambda^{*} T\right)^{G}}\right)=C^{\infty}(M) \otimes_{\mathbb{R}} \Omega\left(V, \Lambda^{*} T\right)^{G},
$$

concluding the proof.

The space of invariant forms that we have found does not have the desirable property of being closed under d. Indeed, it contains all functions on M, but it does not contain all exact forms on M. In the next section we shall see that under certain hypotheses on the connection form ω, the space of parallel invariant forms is d-closed.

3. d-closedness

We have seen that the algebra of invariant forms is not closed under d. Having fixed a connection form ω on P, we can work around this problem by discarding the $C^{\infty}(M)$ factor, and consider

$$
\mu_{M} \Omega\left(V, \Lambda^{*} T\right)^{G} \subset \Omega(X)^{\mathcal{G}} .
$$

It turns out that this subalgebra of $\Omega(X)$ may be closed under d, but only under very restrictive conditions on the connection, determining which is the purpose of this section.

First, we characterize the subalgebra under consideration as follows:
Lemma 5. A section of $\Omega\left(V, \Lambda^{*} T\right)$ lies in $\Omega\left(V, \Lambda^{*} T\right)^{G}$ if and only if it is both \mathcal{G}-invariant and parallel.
Proof. A section of $\underline{\Omega\left(V, \Lambda^{*} T\right)}$ can be viewed as a G-equivariant map

$$
\alpha: P \rightarrow \Omega\left(V, \Lambda^{*} T\right) ;
$$

the section is parallel if and only if

$$
\mathrm{d} \alpha+\omega \alpha=0
$$

This equation implies that α takes values in a single G-orbit; if the corresponding form is \mathcal{G}-invariant, by Corollary 4 the map α takes values in $\Omega\left(V, \Lambda^{*} T\right)^{G}$, and so it is constant. The converse is proved in a similar way.

The second ingredient will be a formula that gives the action of d on $\Omega(X)$ in terms of the bundle $\underline{\Omega\left(V, \Lambda^{*} T\right)}$. Some language is needed to write this formula. We define the covariant derivative

$$
\nabla: \Gamma\left(\underline{\Omega\left(V, \Lambda^{*} T\right)}\right) \rightarrow \Omega^{1}\left(M, \underline{\Omega\left(V, \Lambda^{*} T\right)}\right)
$$

in the usual way. The natural map

$$
\Lambda^{p} T \otimes \Lambda^{q} T \ni \alpha \otimes \beta \rightarrow \alpha \wedge \beta \in \Lambda^{p+q} T
$$

induces a map c through the composition

$$
\Omega^{p}\left(M, \Omega\left(V, \Lambda^{*} T\right)\right) \xrightarrow{c} \Gamma \frac{\Lambda^{p} T \otimes \Omega\left(V, \Lambda^{*} T\right)}{c} \longrightarrow \Gamma\left(\Omega\left(V, \Lambda^{*} T\right)\right) .
$$

We also have the exterior covariant differential

$$
D: \Omega^{p}\left(M, \underline{\Omega\left(V, \Lambda^{*} T\right)}\right) \rightarrow \Omega^{p+1}\left(M, \underline{\Omega\left(V, \Lambda^{*} T\right)}\right)
$$

which coincides with ∇ for $p=0$ and satisfies the Leibnitz rule

$$
D(\alpha \otimes h)=\mathrm{d} \alpha \otimes h+(-1)^{\operatorname{deg} \alpha} \alpha \wedge \nabla h .
$$

Finally, the standard operator d on $\Omega\left(V, \Lambda^{*} T\right)$ is G-equivariant; as such, it induces bundle maps

$$
\underline{\mathrm{d}:} \underline{\Omega^{p}\left(V, \Lambda^{*} T\right)} \rightarrow \underline{\Omega^{p+1}\left(V, \Lambda^{*} T\right)} .
$$

Lemma 6. The map d: $C^{\infty}(X) \rightarrow \Omega^{1}(X)$ satisfies

$$
\begin{equation*}
\mathrm{d}\left(\mu_{M} h\right)=\mu_{M} \underline{\mathrm{~d}} h+\left(\mu_{M} c \nabla h\right) \tag{12}
\end{equation*}
$$

where h is a section of $C^{\infty}(V)$.
Proof. It is sufficient to prove the statement at a point $[u, v]$ of X; let s be a local section of P with $u=s(y)$ for some y in M, and write $h=[s, f]$. We must evaluate both sides of (12) on a vector

$$
[(u, v), w] \in T_{[u, v]} X, \quad w \in T \oplus V
$$

Suppose first that w lies in V; then ∇h gives no contribution. Let σ be a curve on V with

$$
\sigma(0)=v, \quad \sigma^{\prime}(0)=w ;
$$

then $\tilde{\sigma}=[u, \sigma]$ is a curve on X satisfying $\partial_{t} \tilde{\sigma}(0)=[(u, v), w]$. Clearly, we have

$$
\mathrm{d}\left(\mu_{M} h\right)([(u, v), w])=\partial_{t}\left(\tilde{\sigma}^{*} \mu_{M} h\right)(0)=\mathrm{d} f_{v}(w) ;
$$

since $\mu_{M} \underline{\mathrm{~d}} h=\mu_{M}(s, \mathrm{~d} f),(12)$ is satisfied when evaluated on a vertical w.
Now let w lie in T; then $\mu_{M}(\underline{\mathrm{~d}} h)$ gives no contribution. Take a horizontal curve $\sigma(t)$ on P satisfying

$$
\sigma(0)=u, \quad \theta_{u} \sigma^{\prime}(0)=w \in T
$$

Then $\tilde{\sigma}=[\sigma, v]$ is a curve on X, and the isomorphism (8) maps

$$
\left(u, v ; \sigma^{\prime}(0), 0\right) \rightarrow((u, v),(w, 0)),
$$

meaning that $\partial_{t} \tilde{\sigma}(0)=[(u, v), w]$. We can assume that s agrees with σ, in the sense that $s_{p(\sigma(t))}=\sigma(t)$. In particular, $s_{* y}([u, w])$ is horizontal. By the general formula for the covariant derivative,

$$
\begin{equation*}
\nabla_{[u, w]}[s, f]=\left[u, \partial_{[u, w]} f+s^{*} \omega([u, w]) f\right]=\left[u, \partial_{[u, w]} f\right] \tag{13}
\end{equation*}
$$

where $\partial_{[u, w]} f$ is the derivative along $[u, w]$ of $f: M \rightarrow C^{\infty}(V)$. Thus

$$
\mu_{M} c \nabla h([(u, v), w])=\partial_{[u, w]} f(v)=\partial_{t}\left(\tilde{\sigma}^{*} \mu_{M} h\right)(0)=\mathrm{d}\left(\mu_{M} h\right)([(u, v), w]),
$$

where the second equality follows from $\left(\mu_{M} h\right)(\sigma(t), v)=f_{p(\sigma(t))}(v)$.
Recall that the torsion $\Theta \in \Omega^{2}(P, T)$ is the horizontal part of $\mathrm{d} \theta$, which can also be seen as a 2-form in $\Omega^{2}(M, T M)$ satisfying

$$
\Theta(X, Y)=\frac{1}{2}\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)
$$

More generally, if S is a p-form taking values in $T M$ and α is a q-form on M, we define the contraction

$$
\left.(S\lrcorner_{M} \alpha\right)\left(X_{1}, \ldots, X_{p+q-1}\right)=\frac{q}{(p+q-1)!} \sum_{\sigma}(-1)^{\sigma} \alpha\left(S\left(X_{\sigma_{1}}, \ldots, X_{\sigma_{p}}\right), X_{\sigma_{p+1}}, \ldots, X_{\sigma_{p+q-1}}\right),
$$

where σ runs over permutations of $p+q-1$ elements.
Lemma 7. Let h be an element of $\Omega\left(M, \underline{\Omega\left(V, \Lambda^{*} T\right)}\right)$. Then

$$
\left.\nabla_{Y} c h=c \nabla_{Y} h, \quad c \nabla c h=c D h-c(\Theta\lrcorner_{M} h\right) .
$$

Proof. We work on the principal bundle P, adopting the language and methods of [16]. We establish the following notation: if Y is a vector field on M, Y^{*} is its horizontal lift. With a section h of an associated bundle, say $P \times_{G} W$, we associate the corresponding equivariant map $\bar{h}: P \rightarrow W$. More generally, with a form h in $\Omega(M, \underline{W})$, we associate a form $\bar{h} \in \Omega(P, W)$ characterized by

$$
\left.\bar{h}\left(X_{1}^{*}, \ldots, X_{k}^{*}\right)=\overline{h\left(X_{1}, \ldots, X_{k}\right)}, \quad Z\right\lrcorner \bar{h}=0 \text { for } Z \text { vertical. }
$$

The covariant derivative of a section h or a vector field X satisfies

$$
\begin{equation*}
\overline{\nabla_{Y} h}=Y^{*} \bar{h}, \quad \theta\left(\nabla_{Y} X\right)^{*}=Y^{*} \theta\left(X^{*}\right) \tag{14}
\end{equation*}
$$

At every point of P, the tautological form θ defines an isomorphism of the horizontal distribution with T. This induces a global basis of horizontal vector fields E_{1}, \ldots, E_{n}. Let $e_{i}=\theta\left(E_{i}\right)$ be the corresponding basis of T. If h is

$$
\overline{c h}=\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} e^{i_{1}, \ldots, i_{k}} \wedge \bar{h}\left(E_{i_{1}}, \ldots, E_{i_{k}}\right) .
$$

Taking the covariant derivative with respect to Y,

$$
\begin{aligned}
\overline{\nabla_{Y} c h}= & \sum_{\substack{1 \leq i_{1}, \ldots, i_{k} \leq n}} e^{i_{1}, \ldots, i_{k}} \wedge Y^{*}\left(\bar{h}\left(E_{i_{1}}, \ldots, E_{i_{k}}\right)\right) \\
= & \sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} e^{i_{1}, \ldots, i_{k}} \wedge\left(\mathcal{L}_{Y} \bar{h}\right)\left(E_{i_{1}}, \ldots, E_{i_{k}}\right) \\
& +\sum_{\substack{1 \leq i_{i}, \ldots, i_{k} \leq n \\
l=1, \ldots, k}} e^{i_{1}, \ldots, i_{k}} \wedge(-1)^{l+1} \bar{h}\left(\left[Y^{*}, E_{i_{l}}\right], E_{i_{1}}, \ldots, \widehat{E_{i_{l}}}, \ldots, E_{i_{k}}\right) .
\end{aligned}
$$

By the definition of $\bar{\theta}=\mathrm{d} \theta$ and (14),

$$
\theta\left(\left[Y^{*}, E_{i_{l}}\right]\right)=-2 \bar{\Theta}\left(Y^{*}, E_{i_{l}}\right)-\overline{\nabla Y}\left(E_{i_{l}}\right)
$$

In general, if α is a $T M$-valued 1 -form, then

$$
\begin{aligned}
\overline{c(\alpha\lrcorner M h)} & =\sum_{1 \leq i_{1}, \ldots, i_{k} \leq n} e^{i_{1}, \ldots, i_{k}} \wedge \frac{1}{(k-1)!} \sum_{\sigma}(-1)^{\sigma} h\left(\alpha\left(E_{\sigma_{1}}\right), E_{\sigma_{2}}, \ldots, E_{\sigma_{k}}\right) \\
& =k \sum_{\sigma} e^{\sigma_{1}, \ldots, \sigma_{k}} \wedge h\left(\alpha\left(E_{\sigma_{1}}\right), E_{\sigma_{2}}, \ldots, E_{\sigma_{k}}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\overline{\nabla_{Y} c h}=c\left(\mathcal{L}_{Y^{*}} \bar{h}\right)-\overline{c((Y\lrcorner \Theta)\lrcorner M h)}-\overline{c((\nabla Y)\lrcorner M h)} . \tag{15}
\end{equation*}
$$

Similarly, from

$$
\overline{\nabla_{Y} h}\left(X_{1}^{*}, \ldots, X_{k}^{*}\right)=Y^{*}\left(\bar{h}\left(X_{1}^{*}, \ldots, X_{k}^{*}\right)\right)-\sum_{l=1}^{k}(-1)^{l+1} \bar{h}\left(Y^{*} \theta\left(X_{l}^{*}\right), X_{1}^{*}, \ldots, \widehat{X_{l}^{*}}, \ldots, X_{k}^{*}\right)
$$

we compute

$$
\overline{\nabla_{Y} h}=\left(\mathcal{L}_{Y^{*}} \bar{h}\right)-\overline{(\nabla Y)\lrcorner M h}-\overline{(Y\lrcorner \Theta)\lrcorner M h} ;
$$

comparing with (15), the first part of the statement follows. The second part is proved in the same way.
We need to introduce two more contractions beside \lrcorner_{M}. The first is \lrcorner_{T}, induced by the usual interior product

$$
\lrcorner: T \otimes \Omega\left(V, \Lambda^{k} T\right) \rightarrow \Omega\left(V, \Lambda^{k-1} T\right)
$$

$$
\left.\left.(\alpha\lrcorner_{T} h\right)_{u}\left(X_{1}, \ldots, X_{p}\right)=\alpha_{u}\left(X_{1}, \ldots, X_{p}\right)\right\lrcorner h_{u} .
$$

Likewise, the G-equivariant map $\eta: \mathfrak{g} \otimes \Omega\left(V, \Lambda^{*} T\right) \rightarrow \Omega\left(V, \Lambda^{*} T\right)$,

$$
\eta(A, h)(v)=A(v)\lrcorner h(v), \quad A \in \mathfrak{g}, h \in \Omega\left(V, \Lambda^{*} T\right),
$$

induces a contraction, also to be denoted by η. Explicitly, if α is a $\underline{\mathfrak{q}}$-valued p-form and h is a section of $\underline{\Omega\left(V, \Lambda^{*} T\right)}$,

$$
\eta(\alpha, h)_{u}\left(X_{1}, \ldots, X_{p}\right)=\eta\left(\alpha_{u}\left(X_{1}, \ldots, X_{p}\right), h_{u}\right) .
$$

We can finally prove:
Lemma 8. The map d: $\Omega(X) \rightarrow \Omega(X)$ satisfies

$$
\begin{equation*}
\mathrm{d}\left(\mu_{M} h\right)=\mu_{M} \underline{\mathrm{~d}} h+\mu_{M} c \nabla h+\frac{1}{2} \mu_{M} c\left(\Theta_{\lrcorner} h\right)+\frac{1}{2} \mu_{M} c \eta(R, h) . \tag{16}
\end{equation*}
$$

Proof. We proceed by induction on the degree of $\mu_{M} h$. If the degree is zero, (16) is the content of Lemma 6. Otherwise, it suffices to verify it on a covering of X consisting of subsets $X_{A}=\pi^{-1}(A)$, with A open in M. We can assume that X_{A} is diffeomorphic to some \mathbb{R}^{n}, and therefore assume that

$$
\mu_{M} h=\mathrm{d} \mu_{M} a \wedge \mu_{M} \beta
$$

with a a section of $C^{\infty}(V)$ and β a section of $\underline{\Omega\left(V, \Lambda^{*} T\right)}$. Indeed, as $X_{A} \cong \mathbb{R}^{n}$, the general element h will be a linear combination with constant coefficients of elements of this type.

By induction, the left-hand side of (16) is

$$
\begin{equation*}
\left.\mathrm{d}\left(\mathrm{~d} \mu_{M} a \wedge \mu_{M} \beta\right)=-\mathrm{d} \mu_{M} a \wedge \mu_{M}\left(\underline{\mathrm{~d}} \beta+c \nabla \beta+\frac{1}{2} \Theta\right\lrcorner_{T} \beta+\frac{1}{2} c \eta(R, \beta)\right) \tag{17}
\end{equation*}
$$

On the other hand, by Lemma 6,

$$
\mathrm{d} \mu_{M} a \wedge \mu_{M} \beta=\mu_{M}(\underline{\mathrm{~d}} a \wedge \beta+c \nabla a \wedge \beta),
$$

so the right-hand side of (16) is (the image under μ_{M} of)

$$
\begin{aligned}
& \underline{\mathrm{d}}(\underline{\mathrm{~d}} a \wedge \beta+c \nabla a \wedge \beta)+c \nabla(\underline{\mathrm{~d}} a \wedge \beta+c \nabla a \wedge \beta) \\
& \left.\quad+\frac{1}{2} \Theta\right\lrcorner_{T}(\underline{\mathrm{~d}} a \wedge \beta+c \nabla a \wedge \beta)+\frac{1}{2} c \eta(R, \underline{\mathrm{~d}} a \wedge \beta+c \nabla a \wedge \beta)
\end{aligned}
$$

which, since \underline{d} is a differential operator and it commutes with ∇, differs from (17) by

$$
\begin{equation*}
\left.c \nabla c \nabla a \wedge \beta+\frac{1}{2} \Theta\right\lrcorner T(c \nabla a) \wedge \beta+\frac{1}{2} c \eta(R, \underline{\mathrm{~d}} a) \wedge \beta \tag{18}
\end{equation*}
$$

Now, by Lemma 7

$$
c \nabla c \nabla a(X, Y)=\frac{1}{2}\left(R(X, Y) a-\nabla_{\Theta(X, Y)} a\right)
$$

and

$$
\eta(R, \underline{\mathrm{~d}} a)(X, Y)_{v}=\underline{\mathrm{d}} a\left(R(X, Y)_{v}\right)=(-R(X, Y) a)_{v}
$$

so that (18) is zero.
Recall from the beginning of this section that we are interested in sections of $\Omega\left(V, \Lambda^{*} T\right)$ corresponding to elements of $\Omega\left(V, \Lambda^{*} T\right)^{G}$. More generally, given a G-space Y, we say that the space of constant sections of \underline{Y} is

$$
Y^{G} \subset \Gamma(\underline{Y}) .
$$

We can now prove the main result of this section, that gives a sufficient condition on the connection ω for the algebra of constant forms to be closed.
Theorem 9. If both torsion and curvature are constant, the space $\Omega\left(V, \Lambda^{*} T\right)^{G}$ of constant forms is a differential graded subalgebra of $\Omega(X)$.
Proof. We must prove that for every constant form $h, \mathrm{~d} \mu_{h}$ is also constant. By Lemma $5, h$ is \mathcal{G}-equivariant and parallel; by (16), we must prove the same holds for

$$
\left.\underline{\mathrm{d}} h+\frac{1}{2} c(\Theta\lrcorner_{T} h\right)+\frac{1}{2} c \eta(R, h) .
$$

Since \underline{d} and the contractions are equivariant, equivariance is straightforward. Concerning parallelism, Lemma 7 gives immediately

$$
\left.\left.\nabla_{Y}\left(\underline{\mathrm{~d}} h+\frac{1}{2} c(\Theta\lrcorner_{T} h\right)+\frac{1}{2} c \eta(R, h)\right)=\frac{1}{2} c\left(\nabla_{Y} \Theta\right)\right\lrcorner_{T} h+\frac{1}{2} c \eta\left(\nabla_{Y} R, h\right)=0 .
$$

By way of converse, we now show that if d preserves the space of constant forms, under the only additional hypothesis that the action of \mathfrak{g} on V is effective, then the curvature R must be constant. Indeed suppose that β is any
non-zero form in $\Omega^{2}(M, \underline{\mathfrak{g}})$. If h is the constant section of $\underline{\Omega\left(V, \Lambda^{*} T\right)}$ corresponding to the volume form on V, we claim that

$$
\begin{equation*}
c \eta(\beta, h) \text { is not identically zero. } \tag{19}
\end{equation*}
$$

Indeed, since \mathfrak{g} acts effectively on V, there exist X_{1}, X_{2}, u and v such that

$$
\beta_{y}\left(X_{1}, X_{2}\right)[u, v] \neq 0, \quad X_{1}, X_{2} \in T_{y} M, u \in P_{y}, v \in V
$$

Then

$$
\left.\eta(\beta, h)\left(X_{1}, X_{2}\right)_{[u, v]}=\beta\left(X_{1}, X_{2}\right)[u, v]\right\lrcorner h([u, v]) \neq 0 .
$$

So there exist sections Y_{1}, \ldots, Y_{k} of \underline{V} such that

$$
c \eta(\beta, h)_{y}\left(X_{1}, X_{2}, Y_{1}, \ldots, Y_{k}\right)=h\left(\beta_{y}\left(X_{1}, X_{2}\right)[u, v], Y_{1}, \ldots, Y_{k}\right) \neq 0
$$

that implies (19).
Now observe that by construction $\underline{\mathrm{d}} h$ and $\Theta\lrcorner_{T} h$ are zero, so that $\mathrm{d} \mu_{M} h$ can only be parallel if $c \eta\left(\nabla_{Y} R, h\right)$ is zero. By (19), this implies that $\nabla_{Y} R=0$. The same argument applied to $\beta=R-\underline{g} R$ proves that R must be equivariant.

An analogous statement for the torsion seems more complicated to prove: indeed, we cannot repeat the argument using the volume form on the base, because this is automatically closed. However, assume that there is an invariant element

$$
s \otimes f \in S^{*} V \otimes \operatorname{Hom}\left(T, \Lambda^{k} V\right)
$$

with f injective, as is the case in many interesting examples (see e.g. Section 7). Let t_{1}, \ldots, t_{n} be an orthonormal basis of T; then $s \otimes f$ induces an invariant element

$$
V \ni v \rightarrow s(v) \sum_{i=1}^{n} t_{i} \otimes f\left(t_{i}\right) \in \Lambda^{k+1}(T \oplus V)
$$

Let h be the corresponding constant section, taking values in $\Omega^{k}(V, T)$. If $\mathrm{d} \mu_{M} h$ is constant, then by (16) it takes values in

$$
\Omega^{k+1}(V, T) \oplus \Omega^{k}\left(V, \Lambda^{2} T\right) \oplus \Omega^{k-1}\left(V, \Lambda^{3} T\right)
$$

These spaces are invariant under both \mathcal{G} and ∇_{Y}, so in particular the second component, namely $\left.\frac{1}{2} c(\Theta\lrcorner_{T} h\right)$, must be constant. Proceeding as in the case of R, we find that Θ must also be constant.

Recall that our final goal is to provide a method for constructing explicit special geometries. If the algebra of constant forms is d-closed, one can choose a finite basis of generators and compute d in terms of that basis (see Section 6). Then, searching for a special geometry whose defining forms are invariant becomes a matter of looking for differential forms of the correct algebraic type, on which the linear operator d satisfies the required conditions (see Section 7). Otherwise, one can still hope to find single closed constant elements applying Lemma 8, though we shall not pursue this method in this paper.

4. Invariant forms on a vector space

We are now confronted with the purely algebraic problem of determining the space of G-invariant $\Lambda^{*} T$-valued differential forms on V. In this section we give an effective criterion for determining whether a space of invariant forms is complete. The only assumption will be that G is compact and connected.

Throughout this section, we shall identify $\Omega\left(V, \Lambda^{*} T\right)^{G}$ with

$$
\mathcal{F}=\{\alpha: V \rightarrow \Lambda \mid \alpha \text { is smooth and } G-\text { equivariant }\}, \quad \Lambda=\Lambda^{*} T \otimes \Lambda^{*} V .
$$

We view \mathcal{F} as a $C^{\infty}(V)^{G}$-module. For every subspace W of \mathcal{F} and v in V, we set

$$
W_{v}=\{\alpha(v) \mid \alpha \in W\} .
$$

Lemma 10. Let $W \subset W^{\prime}$ be submodules of \mathcal{F}, such that

$$
W_{v}=W_{v}^{\prime}, \quad \forall v \in V
$$

Assume further that W is finitely generated. Then $W=W^{\prime}$.
Proof. Suppose W is finitely generated. We shall construct w_{1}, \ldots, w_{k} in W such that

$$
\begin{equation*}
\left\{\left(w_{i}\right)(v) \mid i=1, \ldots, k,\left(w_{i}\right)(v) \neq 0\right\} \text { is a basis of } W_{v} \quad \forall v \in V, \tag{20}
\end{equation*}
$$

and prove that w_{1}, \ldots, w_{k} generate W^{\prime}. Let w_{1}, \ldots, w_{k} be any set of generators of W. Consider the set
$U=\left\{v \in V \mid w_{k}(v)\right.$ is linearly dependent on $\left.w_{1}(v), \ldots, w_{k-1}(v)\right\}$,
and let f be a non-negative smooth function on V with $f^{-1}(0)=U$. For instance, we can take f to be the square distance between $w_{k}(v)$ and the vector space spanned by $w_{1}(v), \ldots, w_{k-1}(v)$. Now define

$$
h(x)=\int_{G} f(g x) \mu_{G}
$$

where μ_{G} is the Haar measure on G. Clearly, h is a G-invariant function with $h^{-1}(0)=U$. Thus, we have obtained elements

$$
w_{1}, \ldots, w_{k-1}, h w_{k} \in W
$$

such that at each v, the last element is either zero or linearly independent of w_{1}, \ldots, w_{k-1}. Iterating this procedure for w_{k-1}, \ldots, w_{2}, we find elements satisfying (20).

Elements of W^{\prime} can be viewed as sections of a trivial bundle $\pi: V \times \Lambda \rightarrow V$. The w_{i} define a degenerate metric on this bundle by

$$
w_{1} \otimes w_{1}+\cdots+w_{k} \otimes w_{k}
$$

Since $W_{v}=W_{v}^{\prime}$, for every α in W^{\prime}

$$
\alpha(v)=\sum_{i=1}^{k}\left\langle\alpha(v), w_{i}(v)\right\rangle w_{i}(v),
$$

i.e. $\alpha=\sum\left\langle\alpha, w_{i}\right\rangle w_{i}$. By construction, $\left\langle\alpha, w_{i}\right\rangle$ are smooth invariant functions; so, α is linearly dependent on the w_{i}.

We write $H \leq G$ if H is a closed subgroup of G. We shall need the following result from [5]:
Theorem 11 (Tietze-Gleason-Bredon). Let M and N be manifolds on which a compact Lie group G acts, and let A be a closed invariant subspace of M. Then every smooth equivariant map $\phi: A \rightarrow N$ can be extended to a smooth equivariant map $\bar{\phi}: M \rightarrow N$.

We can now prove the main theorem of this section:
Theorem 12. \mathcal{F} is finitely generated. Let W be a finitely generated submodule of \mathcal{F}; then W coincides with all of \mathcal{F} if and only if

$$
\begin{equation*}
W_{v}=\Lambda^{\operatorname{Stab} v} \quad \forall v \in V \tag{21}
\end{equation*}
$$

Proof. Let W be a finitely generated submodule of \mathcal{F} satisfying (21). Let $\alpha: V \rightarrow \Lambda$ be invariant; clearly, $\alpha(v)$ is fixed by $\operatorname{Stab}(v)$. So,

$$
\begin{equation*}
W_{v} \subseteq \mathcal{F}_{v} \subseteq \Lambda^{\operatorname{Stab}(v)}, \tag{22}
\end{equation*}
$$

and by hypothesis equality holds. Then $W=\mathcal{F}$ by Lemma 10 , proving the "if" part of the statement.
We claim that there always exists W as in the hypothesis. Then $\mathcal{F}=W$ is finitely generated, and equality holds in (22), giving the "only if" part of the statement.

To prove the claim, choose a group H which is the stabilizer of a point of V, and let s_{1}, \ldots, s_{k} be a basis of Λ^{H}. For each s_{i}, we shall construct an equivariant map

$$
\tilde{s}_{i}: V \rightarrow \Lambda
$$

such that $\tilde{s}_{i}(v)$ is a non-zero multiple of s_{i} at each v with stabilizer H. By equivariance, it will follow that $\tilde{s}_{1}(v), \ldots, \tilde{s}_{k}(v)$ is a basis of $\Lambda^{\operatorname{Stab} v}$ for all v with stabilizer conjugate to H. It is well known that an orthogonal representation of a compact group has a finite number of orbit types (see [5]); in other words, there are only a finite number of stabilizers up to conjugation. It is therefore sufficient to consider a finite number of H; thus, we obtain a finite collection of equivariant maps from V to Λ, which generate a module W with the required properties. It only remains to construct the \tilde{s}_{i}.

Observe first that since G is compact, the number of $K \leq G$ which have the same Lie algebra as H is finite. For every such K containing H, choose an element $g_{K} \in K \backslash H$. At each point v of V^{H}, consider the map

$$
\mathfrak{g} / \mathfrak{h} \rightarrow \operatorname{End}(V)
$$

induced by the infinitesimal action of G; this map is injective if and only if Stab v has the same Lie algebra as H. Therefore we can define a smooth function f on V^{H} satisfying

$$
\left\{\begin{array}{l}
f(v)>0 \quad \text { if Stab } v \text { has the same Lie algebra as } H, \\
f(v)=0 \quad \text { otherwise. }
\end{array}\right.
$$

Now consider the function on V^{H}

$$
\tilde{f}(v)=f(v) \prod_{\substack{\mathfrak{e}=\mathfrak{b} \\ H \leq K \leq G}}\left\|g_{K}(v)-v\right\|^{2} ;
$$

by construction, $\tilde{f}^{-1}(0)$ is the subset of V^{H} where the stabilizer is bigger than H. So, we can define a map

$$
V^{H} \ni v \xrightarrow{\tilde{s}_{i}} \tilde{f}(v) s_{i} \in \Lambda,
$$

which extends to an equivariant map on $G V^{H}$. Since $G V^{H}$ is closed, we can apply Theorem 11 to extend \tilde{s}_{i} to an equivariant map defined on all of V.

When checking the criterion of Theorem 12, it may be useful to separate forms by degree. More precisely, we say that a form in \mathcal{F} has bidegree (p, q) if it takes values in

$$
\Lambda_{p, q}=\Lambda^{p} T \otimes \Lambda^{q} V
$$

we denote $\mathcal{F}_{p, q}$ the space of forms of bidegree (p, q). Since $\Lambda=\bigoplus \Lambda_{p, q}$ is a G-invariant decomposition, we have thus made $\mathcal{F}=\bigoplus \mathcal{F}_{p, q}$ into a bigraded vector space. Theorem 12 still holds if one replaces (21) with

$$
\left(W \cap \mathcal{F}_{p, q}\right)_{v}=\left(\Lambda_{p, q}\right)^{\operatorname{Stab} v} \quad \forall v \in V
$$

We now apply Theorem 12 to show that the dictionary of Section 1 is complete. In this case, $G=\mathrm{U}(1)$ and $V=\mathbb{R}^{2}=T$. We can reinterpret the functions a_{1}, a_{2} on $T^{*} S^{2}$ as the standard coordinates on $V=\mathbb{R}^{2}$, and, accordingly, identify the b_{i} with $\mathrm{d} a_{i}$. Moreover, we declare β_{1}, β_{2} to be the standard basis of $T^{*}=\left(\mathbb{R}^{2}\right)^{*}$. We can now state and prove:

Corollary 13. The $C^{\infty}(V)^{G}$-algebra generated by (3)-(5) coincides with the space of invariant forms $\Omega\left(V, \Lambda^{*} T\right)^{G}$.
Proof. The stabilizer for the action of G on V is the whole G at $v=0$, and the identity at other points. By a straightforward computation,

$$
\operatorname{dim}\left(\Lambda_{p, q}\right)^{G}= \begin{cases}1 & p=0,2, q=0,2 \\ 2 & p=1=q \\ 0 & \text { otherwise }\end{cases}
$$

Let W be the $C^{\infty}(V)^{G}$-algebra generated by (3)-(5). Then W_{0} is

$$
W_{0}=\left\langle 1, b_{12}, \beta_{12}, b_{1} \beta_{1}+b_{2} \beta_{2}, b_{1} \beta_{2}-b_{2} \beta_{1}, b_{12} \wedge \beta_{12}\right\rangle,
$$

which has dimension six; so, (21) is satisfied at $v=0$. Evaluating at the point v with coordinates $a_{1}=1, a_{2}=0$, we obtain

$$
W_{v} \supset\left\langle b_{1}, \beta_{1}, b_{2}, \beta_{2}\right\rangle .
$$

Thus, $W_{v}=\Lambda$, and Theorem 12 is satisfied.

5. Dictionaries of forms

Theorem 9 and the following remarks show that the natural setting for our construction is that of constant torsion and curvature. This condition implies that any two points have affine isomorphic neighbourhoods (see [16], Chap. VI); this is very close to requiring that the group of affine transformations act transitively. In this section we shall assume that this stronger condition holds, considering, that is to say, homogeneous spaces, and we illustrate the method sketched in Section 1 to produce a list of elements of $\Omega\left(V, \Lambda^{*} T\right)^{G}$. This list is called a "dictionary", because its elements are generated from a much smaller list of objects in the same way that the words appearing in a dictionary are obtained from the letters of the alphabet. Consistently with the metaphor (since different words may share the same meaning), we shall think of our dictionary not so much as a list of forms, but as an abstract set that maps non-injectively to $\Omega\left(V, \Lambda^{*} T\right)^{G}$; this distinction will play a significant rôle in Section 6 .

Consider a homogeneous space

$$
M=H / G
$$

we view H as a principal bundle over M with fibre G, on which we fix a G-invariant splitting

$$
\begin{equation*}
\mathfrak{h}=T \oplus \mathfrak{g} . \tag{23}
\end{equation*}
$$

The projection on \mathfrak{g}, extended left-invariantly to H, gives a connection form ω; similarly, the projection on T defines a tautological form θ that makes H into an "ineffective G-structure": in other words,

$$
T M=H \times_{G} T,
$$

even though G might not act effectively on T.
As usual, we fix a G-module V, setting $X=H \times{ }_{G} V$, and we are interested in the algebra $\Gamma\left(H / G, \underline{\Omega\left(V, \Lambda^{*} T\right)^{G}}\right)$ of constant forms in the sense of Section 3. Of course, there is a global action of H on X, and it would also be natural to consider the space $\Omega(X)^{H}$ of forms that are invariant in this sense. In fact, the two spaces coincide:

Proposition 14. The space of constant forms on $X=H \times{ }_{G} V$ coincides with the space of H-invariant forms, i.e.

$$
\mu_{M}\left(\Gamma\left(M, \underline{\Omega\left(V, \Lambda^{*} T\right)^{G}}\right)\right)=\Omega(X)^{H} .
$$

Proof. We can view sections of the associated bundle $\underline{\Omega\left(V, \Lambda^{*} T\right)}$ as G-equivariant maps

$$
\alpha: H \rightarrow \Omega\left(V, \Lambda^{*} T\right),
$$

where G acts on H by right multiplication. Such a map determines an H-invariant form in $\Omega(X)$ if and only if, say, $\alpha(h)=\alpha_{0}$ for all h. Then, by G-equivariance, α_{0} is in $\Omega\left(V, \Lambda^{*} T\right)^{G}$. Conversely, every element α_{0} of $\Omega\left(V, \Lambda^{*} T\right)^{G}$ determines a unique α by $\alpha(h)=\alpha_{0}$, which under μ_{M} corresponds to an H-invariant form on X.

Motivated by Proposition 14, we shall study the space of H-invariant forms on X. By construction, X is a quotient of $H \times V$ by G, acting as

$$
\left(R_{g}\right)(h, v)=\left(h g, g^{-1} v\right) .
$$

The pull-back to $H \times V$ of a form on X is a basic form, meaning that
(1) $R_{g}^{*} \alpha=\alpha$ for all g in G.
(2) $Y\lrcorner \alpha=0$ for all fundamental vector fields Y relative to the action of G.

Further, invariant forms satisfy
(3) $L_{h}^{*} \alpha=\alpha$ for all h in H.

Thus, instead of working with the associated bundle $\Omega\left(V, \Lambda^{*} T\right)^{G}$, relying on Lemma 8 to determine the action of d, we will be concerned with forms on $H \times V$ satisfying Conditions $(1)-(3)$, and use the fact that d commutes with the pull-back.

Fix a G-invariant metric $\sum \mathrm{d} a_{i} \otimes \mathrm{~d} a_{i}$, where a_{1}, \ldots, a_{k} are linear coordinates on V. Let v_{1}, \ldots, v_{k} be the dual orthonormal basis of V. Choose a basis e_{i} of \mathfrak{h} consistent with (23), namely

$$
T \oplus \mathfrak{g}=\left\langle e_{1}, \ldots e_{\operatorname{dim} T}\right\rangle \oplus\left\langle e_{\operatorname{dim} T+1}, \ldots, e_{\operatorname{dim} H}\right\rangle
$$

Let $e^{1}, \ldots, e^{\operatorname{dim} H}$ be the dual basis of \mathfrak{h}^{*}. We shall implicitly extend the e^{i} to left-invariant 1 -forms on H.
The forms $e^{i}, 1 \leq i \leq \operatorname{dim} T$, satisfy Conditions (2) and (3). The forms $\mathrm{d} a_{i}$ do not satisfy Condition (2), but they give rise to forms

$$
b_{i}=\mathrm{d} a_{i}+a_{j}\left(\rho_{*} \omega\right)_{i j}
$$

that do satisfy condition 2 . Here, $\rho: G \rightarrow \mathrm{GL}(V)$ is the representation map and ρ_{*} is its derivative at the identity.
All forms satisfying Conditions (2) and (3) can be written as

$$
\begin{equation*}
\sum_{I, J} f_{I J}\left(a_{1}, \ldots a_{k}\right) e^{I} \wedge b^{J} \tag{24}
\end{equation*}
$$

where I, J are multi-indices relative to the ranges $1 \leq i \leq \operatorname{dim} T, 1 \leq j \leq k$, respectively. However, the generic form (24) does not satisfy condition 1.

The key observation is that whilst the b_{i} taken individually do not satisfy Condition (1), the V-valued form $b=\sum_{i} b_{i} v_{i}$ is invariant, in the sense that
(1') $R_{g}^{*} \alpha=g^{-1} \alpha$ for all g in G.
The same holds for $a=\sum a_{i} v_{i}$. Moreover, one can contract a and b to obtain a legitimate invariant 1-form

$$
a b=\sum_{i} a_{i} b_{i}
$$

The rest of this section contains a generalization of this procedure.
V-valued forms on $H \times V$ satisfying Conditions (1') and (2) can be identified with sections of $\Omega\left(X, \pi^{*} \underline{V}\right)$. The "letters" of our alphabet will be elements of the space

$$
\mathcal{L}=\left(\Omega\left(V, \Lambda^{*} T\right) \otimes V\right)^{G} \subset \Omega\left(X, \pi^{*} \underline{V}\right)
$$

consisting of elements of $\Omega(V \times H, V)$ satisfying Conditions (1'), (2), and (3).
As we mentioned, \mathcal{L} always contains two canonical elements, namely

$$
\begin{equation*}
a: V \rightarrow \Lambda^{0} T \otimes \Lambda^{0} V \otimes V, \quad a(v)=1 \otimes v \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
b: V \rightarrow \Lambda^{0} T \otimes \Lambda^{1} V \otimes V \quad b(v)=\sum_{i} v_{i} \otimes v_{i} \tag{26}
\end{equation*}
$$

Moreover, suppose $\phi: V \rightarrow \Lambda^{k} T^{*}$ is a non-zero, G-equivariant map. Then there is a corresponding element of \mathcal{L}

$$
\beta_{\phi}: V \rightarrow \Lambda^{k} T \otimes \Lambda^{0} V \otimes V, \quad \beta_{\phi}(v)=\sum_{i} \phi\left(v_{i}\right) \otimes v_{i}
$$

Lastly, suppose one has a non-zero, G-equivariant map $\psi: V \otimes V \rightarrow \Lambda^{k} T^{*}$. An element of \mathcal{L} is induced by

$$
\epsilon_{\psi}: V \rightarrow \Lambda^{k} T \otimes \Lambda^{0} V \otimes V, \quad \epsilon_{\psi}(v)=\sum_{i} \psi\left(v, v_{i}\right) \otimes v_{i}
$$

Of course, this small list does not exhaust \mathcal{L}, but the point is that elements of \mathcal{L} are generally easier to obtain than elements of $\Omega\left(V, \Lambda^{*} T\right)$.

Elements of \mathcal{L} can be combined by means of a contraction to obtain elements of $\Omega\left(V, \Lambda^{*} T\right)^{G}$. More precisely, if $m: V \otimes V \rightarrow \mathbb{R}$ is a G-equivariant map, then we can define a linear map

$$
\begin{equation*}
m_{*}: \mathcal{L} \otimes \mathcal{L} \rightarrow \Omega\left(V, \Lambda^{*} T\right)^{G} \tag{27}
\end{equation*}
$$

by

$$
m_{*}\left(\sum_{i} \alpha_{i} \otimes v_{i}, \sum_{j} \alpha_{j}^{\prime} \otimes v_{j}^{\prime}\right)=\sum_{i, j} m\left(v_{i}, v_{j}^{\prime}\right) \alpha_{i} \wedge \alpha_{j}^{\prime}
$$

A contraction m always exists, namely the scalar product. In this case, we write

$$
\alpha \cdot \beta=m_{*}(\alpha, \beta)
$$

One can then ask whether the set of all possible contractions generates the whole algebra of invariant forms. This is in general not true, since $\Lambda^{*} T$ might contain invariant elements (corresponding to invariant forms on M) that cannot be obtained as contractions. However, the following holds:

Proposition 15. The algebra of invariant forms satisfies

$$
\left(\Omega\left(V, \Lambda^{*} T\right)\right)^{G}=\mathcal{L} \cdot \mathcal{L}+\left(\Lambda^{*} T\right)^{G} .
$$

Proof. Let α be an invariant map

$$
\alpha: V \rightarrow \Lambda^{p} T \otimes \Lambda^{q} V, \quad q>0 .
$$

Define an element of \mathcal{L} by

$$
\left.\tilde{\alpha}: V \rightarrow \Lambda^{p} T \otimes \Lambda^{q-1} V \otimes V, \quad \tilde{\alpha}(v)=\sum_{i}\left(v_{i}\right\lrcorner \alpha(v)\right) \otimes v_{i} .
$$

Then

$$
\left.b \cdot \tilde{\alpha}=\sum_{i} v_{i} \wedge\left(v_{i}\right\lrcorner a\right)=q \alpha ;
$$

thus, α lies in $\mathcal{L} \cdot \mathcal{L}$.
Now suppose $q=0$, so that $\alpha: V \rightarrow \Lambda^{p} T$. Its differential at v is a map $\mathrm{d} \alpha_{v}: V \rightarrow \Lambda^{p} T$, and

$$
\alpha(v)=\alpha(0)+\int_{0}^{1} \mathrm{~d} \alpha_{t v}(v) \mathrm{d} t .
$$

Introduce an element of \mathcal{L} by

$$
\tilde{\alpha}: V \rightarrow \Lambda^{p} T \otimes \Lambda^{0} V \otimes V, \quad \tilde{\alpha}(v)=\sum_{i} \int_{0}^{1} \mathrm{~d} \alpha_{t v}\left(v_{i}\right) \otimes v_{i}
$$

Since $\alpha(0)$ lies in $\left(\Lambda^{*} T\right)^{G}$ and

$$
\alpha=\alpha(0)+a \cdot \tilde{\alpha}
$$

the proof is complete.
Observe that the proof of Theorem 12 also applies to \mathcal{L}, showing that \mathcal{L} is a finitely generated module over the space of invariant functions. Then Proposition 15 poses a natural problem: having fixed G, T and V, determine a finite, minimal set $L \subset \mathcal{L}$ such that

$$
\begin{equation*}
\left(\Omega\left(V, \Lambda^{*} T\right)\right)^{G}=C^{\infty}(V)^{G}\left(L \cdot L+\left(\Lambda^{*} T\right)^{G}\right) \tag{28}
\end{equation*}
$$

This will be discussed in Section 6, though in a slightly different flavour, as we shall allow for more general contractions, beside the scalar product.

So far, we have not really used the fact that M is a homogeneous space. This hypothesis does simplify things when computing the action of d. Recall that $H \times V$ can be identified with the pull-back bundle $\pi^{*} P$, and the connection form ω pulls back to a connection form ω^{X}. The connection form ω^{X} defines an operator D^{X} on $\Omega\left(X, \pi^{*} \underline{V}\right)$ by

$$
D^{X} \alpha=\mathrm{d} \alpha+\omega^{X} \wedge \alpha
$$

It is easy to see that D^{X} preserves (1'), (2) and (3); thus, one can start with a small subset of \mathcal{L}, and enlarge it by applying D^{X} and its powers (although $\left(D^{X}\right)^{2}$ acts like contraction with the curvature). One can then use the Leibnitz rule

$$
\mathrm{d}\left(m_{*}(\alpha, \beta)\right)=m_{*}\left(D^{X} \alpha, \beta\right)+(-1)^{\operatorname{deg} \alpha} m_{*}\left(\alpha, D^{X} \beta\right)
$$

to compute the action of d . This method has the advantage that the "canonical" elements introduced before Proposition 15 satisfy some special properties with respect to D^{X}. Indeed, by definition

$$
D^{X} a=b
$$

Moreover if the torsion is zero, meaning that H / G is a symmetric space, elements of the form β_{ϕ} are automatically D^{X}-closed. However, elements of the form ϵ_{ψ} do not share this property. Thus, depending on V, T and G, it might be the case that the most direct method for computing the action of d is pulling back the forms to $H \times V$, and computing the action of d there.

6. An algorithm

In this section we present an efficient algorithm for computing the dictionary of invariant forms, valid under the assumption that the group G acts transitively on the sphere in V. This hypothesis has two practical consequences: first, $C^{\infty}(V)^{G}$ is the space of (even) functions of the radius. Second, there are only two orbit types, and in particular the set of orbit types is totally ordered. It is this latter condition that is essential to the algorithm.

The input of the algorithm is the following:

- A finite subset $L \subset \mathcal{L}$.
- A finite set B of contractions; more precisely, we require B to be a disjoint union

$$
B=\bigsqcup_{k \in \mathbb{N}} B_{k}, \quad B_{k} \subset \operatorname{Hom}\left(V^{\otimes^{k}}, \mathbb{R}\right)^{G} .
$$

Roughly speaking, the purpose of the algorithm is to check whether an analogue of (28) holds and, in that case, produce a minimal list of generators for $\Omega\left(V, \Lambda^{*} T\right)^{G}$.

Formally, we introduce the set S of formal contractions of elements of \mathcal{L}, i.e.

$$
\begin{equation*}
S=\left\{b\left(\alpha_{1}, \ldots, \alpha_{k}\right) \mid b \in B_{k}, \alpha_{1}, \ldots, \alpha_{k} \in L\right\} . \tag{29}
\end{equation*}
$$

The map (27) induces a "translating map"

$$
\begin{aligned}
& P: S \rightarrow \Omega\left(V, \Lambda^{*} T\right)^{H} \\
& b\left(\alpha_{1}, \ldots, \alpha_{k}\right) \rightarrow b_{*}\left(\alpha_{1}, \ldots, \alpha_{k}\right) .
\end{aligned}
$$

We can now introduce the associative \mathbb{R}-algebra \mathcal{C} generated by \mathcal{S}. From the point of view of geometry, it would be natural to impose commutativity relations on \mathcal{C}, since its elements represent differential forms. However, our algorithm makes an essential use of a partial ordering on \mathcal{C}, suggesting otherwise. Also, from the point of view of implementation there is some advantage in working with sequences, rather than products.

The translating map P extends to an algebra homomorphism

$$
P: \mathcal{C} \rightarrow \Omega\left(V, \Lambda^{*} T\right)^{G} .
$$

For every v in V, the evaluation at v induces a map

$$
P_{v}: \mathcal{C} \rightarrow \Lambda^{*} V \otimes \Lambda^{*} T
$$

Notice that P is typically not injective. Also, P cannot be surjective, because \mathcal{C} was defined as the algebra generated by S over \mathbb{R}, not $C^{\infty}(V)^{G}$. On the other hand, P is surjective "up to" $C^{\infty}(V)^{G}$ if and only if $P(\mathcal{C})$ satisfies the criterion of Theorem 12. Thus, the problem of determining a minimal set of generators is addressed by the following:

Algorithm 16. The following algorithm computes a finite subset $C \subset \mathcal{C}$, of minimal cardinality, such that Span $P(C)=P(\mathcal{C})$.

Description. For every integer l, we define

$$
S^{l}=\left\{\alpha_{1} \cdots \alpha_{l} \mid \alpha_{i} \in S\right\} \subset \mathcal{C}
$$

we say that elements of S^{l} have length l.
The algorithm consists of two steps. First, one computes a set $C_{0} \subset \mathcal{C}$ such that

$$
\begin{equation*}
\text { Span } P_{0}\left(C_{0}\right)=P_{0}(\mathcal{C}), \quad\left|C_{0}\right|=\operatorname{dim} P_{0}(\mathcal{C}), \quad C_{0}=\bigcup_{l}\left(S^{l} \cap C_{0}\right) . \tag{30}
\end{equation*}
$$

Then one fixes a non-zero v in V, and extends C_{0} to a set $C_{v} \subset \mathcal{C}$ such that

$$
\begin{equation*}
\text { Span } P_{v}\left(C_{v}\right)=P_{v}(\mathcal{C}), \quad\left|C_{v}\right|=\operatorname{dim} P_{v}(\mathcal{C}), \quad C_{v}=\bigcup_{l}\left(S^{l} \cap C_{v}\right) . \tag{31}
\end{equation*}
$$

By Theorem 12, (31) implies that Span $P\left(C_{v}\right)=P(\mathcal{C})$ and C_{v} is of minimal cardinality, as required.
We shall illustrate in detail the second step, as the first is completely analogous. Thus, we assume that a subset C_{0} of \mathcal{C} satisfying (30) is given.
(1) Fix a total ordering relation \leq on \mathcal{S}. Extend \leq to $\bigcup_{l} S^{l}$ by decreeing that $\alpha_{1} \cdots \alpha_{l}<\beta_{1} \cdots \beta_{m}$ if either $l<m$ or $l=m$ and $\alpha_{j}<\beta_{j}$ for the smallest j such that $\alpha_{j} \neq \beta_{j}$.
(2) Compute a finite sequence of elements $\left\{\left(k_{v}^{1}\right)_{n}\right\}_{n>0}$, via

$$
\left(k_{v}^{1}\right)_{n}=\min \left\{k \in S \mid P_{v}(k) \notin \operatorname{Span} P_{v}\left(C_{0} \cup\left\{\left(k_{v}^{1}\right)_{i} \mid i<n\right\}\right)\right\} .
$$

Observe that having fixed a basis of $\Lambda^{*}(T \oplus V)$, this is a matter of applying an elimination scheme to a matrix with numeric entries, whose rows represent the images in $\Lambda^{*}(T \oplus V)$ of the elements of S.
(3) Set $C_{v}^{1}=\left(S^{1} \cap C_{0}\right) \cup\left\{\left(k_{v}^{1}\right)_{n}\right\}$.
(4) Starting with $l=1$, compute the subset C_{v}^{l} of elements of length l, iteratively from C_{v}^{l-1}, as follows.
(4.1) For each $\alpha_{1} \cdots \alpha_{l-1} \in C_{v}^{l-1}$, set

$$
A_{\alpha_{1} \cdots \alpha_{l-1}}=\left\{\alpha_{1} \cdots \alpha_{l-1} \beta \mid \beta \in C_{v}^{1}, \alpha_{l-1} \leq \beta, \alpha_{1} \cdots \widehat{\alpha_{j}} \cdots \alpha_{l-1} \beta \in C_{v}^{l-1} \forall j=1, \ldots, l-1\right\} .
$$

Iterating through all elements $\alpha_{1} \cdots \alpha_{l-1}$ of C_{v}^{l-1}, one obtains the set

$$
A_{v}^{l}=\left\{\alpha_{1} \cdots \alpha_{l} \mid \alpha_{j} \in C_{v}^{1}, \alpha_{1} \cdots \widehat{\alpha_{j}} \cdots \alpha_{l} \in C_{v}^{l-1} \forall j=1, \ldots, l, \alpha_{1} \leq \cdots \leq \alpha_{l}\right\} .
$$

(4.2) Compute a finite sequence $\left\{\left(k_{v}^{l}\right)_{n}\right\}_{n>0}$ of elements of $A_{v}^{l} \backslash C_{0}$ via

$$
\left(k_{v}^{l}\right)_{n}=\min \left\{k \in A_{v}^{l} \backslash C_{0} \mid P_{v}(k) \notin \operatorname{Span} P_{v}\left(C_{0} \cup C_{v}^{1} \cup \cdots \cup C_{v}^{l-1} \cup\left\{\left(k_{v}^{l}\right)_{i} \mid i<n\right\}\right)\right\} .
$$

(4.3) Set $C_{v}^{l}=\left\{\left(k_{v}^{l}\right)_{n}\right\} \cup\left(S^{l} \cap C_{0}\right)$.
(5) Increment l and repeat step (4), until C_{v}^{l} is empty.
(6) Set $C_{v}=\bigcup_{l} C_{v}^{l}$.

The above steps give a construction of C_{v} given C_{0}. On the other hand, if one replaces C_{0} with the empty set and v with 0 , the same steps give a construction of C_{0}. Let us check that the set C_{0} obtained this way satisfies (30). We show by induction on l that

$$
\begin{equation*}
P_{0}(h) \in \operatorname{Span}\left\{P_{0}(k) \mid k \in C_{0}^{1} \cup \cdots \cup C_{0}^{l}, k \leq h\right\}, \quad h \in S^{l} . \tag{32}
\end{equation*}
$$

The case $l=1$ is straightforward. Define a finite sequence

$$
\left(h_{0}^{l}\right)_{n}=\min \left\{h \in\left(C_{0}^{1}\right)^{l} \mid P_{0}(h) \notin \operatorname{Span} P_{0}\left(C_{0}^{1} \cup \cdots \cup C_{0}^{l-1} \cup\left\{\left(h_{0}^{l}\right)_{i} \mid i<n\right\}\right)\right\} .
$$

Here, $\left(C_{0}^{1}\right)^{l}$ is the subset of S^{l} whose factors lie in C_{0}^{1}. We shall prove that

$$
\begin{equation*}
\left(h_{0}^{l}\right)_{n} \in A_{0}^{l}, \tag{33}
\end{equation*}
$$

so that the sequences $\left(h_{0}^{l}\right)_{n}$ and $\left(k_{0}^{l}\right)_{n}$ coincide. Since $C_{0}^{l}=\left\{\left(k_{0}^{l}\right)_{n}\right\}$ by definition, and

$$
P_{0}\left(C_{0}^{1}\right)=P_{0}(S)
$$

generates $P_{0}(\mathcal{C})$ as an algebra, (32) will follow.
Let h be the smallest element of S^{l} such that $P_{0}(h)$ does not lie in

$$
\begin{equation*}
\text { Span } P_{0}\left(C_{0}^{1} \cup \cdots \cup C_{0}^{l-1} \cup\left\{\left(h_{0}^{l}\right)_{i} \mid i<n\right\}\right) ; \tag{34}
\end{equation*}
$$

we must prove that h lies in A_{0}^{l}. Let $h=\alpha_{1} \cdots \alpha_{l}$. By minimality of h, we have $\alpha_{1} \leq \cdots \leq \alpha_{l}$. Suppose as a contradiction that $\alpha_{1} \cdots \widehat{\alpha_{j}} \cdots \alpha_{l}$ is not in C_{0}^{l-1} for some j. By the induction hypothesis (32),

$$
P_{0}\left(\alpha_{1} \cdots \widehat{\alpha_{j}} \cdots \alpha_{l}\right)=\sum_{i} a_{i} P_{0}\left(\beta_{i}\right), a_{i} \in \mathbb{R}, \beta_{i} \leq \alpha_{1} \cdots \widehat{\alpha_{j}} \cdots \alpha_{l} .
$$

In particular,

$$
P_{0}(h)=\sum_{i} \epsilon_{i} a_{i} P_{0}\left(\alpha_{j} \beta_{i}\right), \quad \epsilon_{i}= \pm 1 .
$$

For each i, the factors of $\alpha_{j} \beta_{i}$ can be reordered so as to obtain an element less than or equal to h. However, equality would imply that $\beta_{i}=\alpha_{1} \cdots \alpha_{l}$, which is absurd. Since h is minimal, it follows that (34) contains all the $P_{0}\left(\alpha_{j} \beta_{i}\right)$, though not their linear combination $P_{0}(h)$, which is absurd.

Having proved (32), it follows that $P_{0}\left(C_{0}\right)$ spans all of $P_{0}(\mathcal{C})$. Notice that the termination clause of Step (5) is justified by the fact that when C_{0}^{l} is empty, A_{0}^{l+1} is also empty. This condition is bound to occur for some value of l because $P_{0}(\mathcal{C})$ is finite dimensional. Finally, the fact that the images under P of the elements of C_{0} are linearly independent is built in in the construction, so (30) is satisfied. Eq. (31) is proved in the same way, bearing in mind that linear independence at 0 implies linear independence at v.

Notice that the fact that S consists of formal contractions was not used in Algorithm 16. The essential ingredient is the map P. Thus, one can enlarge S by a set of generators for the algebra $\left(\Lambda^{*} T\right)^{G}$, extending P in the obvious way. Indeed, by Proposition 15 one can always choose a finite L for which, enlarging S this way, Algorithm 16 gives a set of generators for $\Omega\left(V, \Lambda^{*} T\right)^{G}$.

We conclude this section with a few words concerning the implementation of Algorithm 16. Most software for differential geometry is written in the form of a package for a computer algebra system, see e.g. GrTensor [18], GRG and Ricci. This approach has the disadvantage that the underlying language provides no support for object oriented programming, or even user-defined types. Motivated by the intrinsically polymorphic nature of the relevant data - the elements of \mathcal{C} - we resorted instead to an actual programming language, namely C^{++}, in the same vein as the library GiNaC [3]. In fact, our implementation relies heavily on GiNaC for symbolic computations, although some work was needed to introduce adequate support for differential forms.

Concerning efficiency, the algorithm was designed to minimize the size and number of the matrices appearing in Steps (2) and (4.2), by far the most computationally expensive. Empirical tests show that more naïve solutions lead to extremely long computation times, even for low dimensional examples such as that of Section 7.

7. Calabi-Yau structures on $\boldsymbol{T} \mathbb{C P}^{2}$

In this section we construct examples of local Calabi-Yau metrics. More precisely, we consider the total space of $T \mathbb{C P}^{2}$, with the natural action of $\operatorname{SU}(3)$, and compute a set of generators for the space of invariant forms. Using these generators, we describe the known homogeneous 3-Sasaki structure on the sphere subbundle \mathbb{S}, and the corresponding conical hyper-Kähler structure on the complement of the zero section. As a generalization, we consider a two-parameter family of contact structures on the sphere subbundle, and, for each contact form α, we identify the symplectic cone over the contact manifold (\mathbb{S}, α) with the complement of the zero section in $T \mathbb{C P}^{2}$. By producing an explicit metric on \mathbb{S} (which requires the list of generators) and using an extension theorem, we show that each of these symplectic manifolds has, locally, a compatible Calabi-Yau metric.

7.1. The dictionary on $\mathrm{SU}(3) \times{ }_{\mathrm{U}(2)} \mathbb{C}^{2}$

We regard $\mathbb{C P}^{2}$ as the homogeneous space $\mathrm{SU}(3) / \mathrm{U}(2)$. Accordingly, we identify its tangent space as the associated bundle

$$
T \mathbb{C P}^{2}=\mathrm{SU}(3) \times_{\mathrm{U}(2)} \mathbb{C}^{2}
$$

The group $U(2)$ acts transitively on the sphere in $V=\mathbb{C}^{2}$, and so we can apply Algorithm 16. Explicitly, we fix a basis e_{1}, \ldots, e_{8} of the Lie algebra $\mathfrak{s u}(3)$, such that the dual basis e^{1}, \ldots, e^{8} of $\mathfrak{s u}(3)^{*}$ satisfies

$$
\begin{aligned}
& \mathrm{d} e^{1}=-e^{23}-e^{45}+2 e^{67}, \quad \mathrm{~d} e^{2}=e^{13}+e^{46}-e^{57}-\sqrt{3} e^{58}, \\
& \mathrm{~d} e^{3}=-e^{12}-e^{47}+\sqrt{3} e^{48}-e^{56}, \quad \mathrm{~d} e^{4}=e^{15}-e^{26}+e^{37}-\sqrt{3} e^{38}, \\
& \mathrm{~d} e^{5}=-e^{14}+e^{27}+e^{36}+\sqrt{3} e^{28}, \quad \mathrm{~d} e^{6}=-2 e^{17}+e^{24}-e^{35}, \\
& \mathrm{~d} e^{7}=2 e^{16}-e^{25}-e^{34}, \quad \mathrm{~d} e^{8}=-\sqrt{3} e^{25}+\sqrt{3} e^{34} .
\end{aligned}
$$

Let $G=\mathrm{U}(2)$ be the connected subgroup with Lie algebra

$$
\mathfrak{g}=\left\langle e_{1}, e_{6}, e_{7}\right\rangle \oplus\left\langle e_{8}\right\rangle \cong \mathfrak{s u}(2)+\mathfrak{u}(1)
$$

and fix an invariant connection

$$
T=\left\langle e_{2}, e_{3}, e_{4}, e_{5}\right\rangle=\left\langle t_{1}, \ldots, t_{4}\right\rangle
$$

If we temporarily identify T with the space of quaternions by

$$
1=e_{2}, \quad i=e_{3}, \quad j=e_{4}, \quad k=e_{5}
$$

then the action of \mathfrak{g} is given by

$$
\rho\left(e_{1}\right)=L_{i}, \quad \rho\left(e_{6}\right)=-L_{j}, \quad \rho\left(e_{7}\right)=L_{k}, \quad \rho\left(\sqrt{3} e_{8}\right)=R_{k} .
$$

Notice that e_{8} was normalized so as to have the same norm as the other elements; consequently, e_{8} has period $2 \pi / \sqrt{3}$.
Let $V=\mathbb{C}^{2}$. Then we have an equivariant isomorphism $i=\mathrm{Id}: V \rightarrow T$ that induces an element β of \mathcal{L}, whose components are

$$
\beta_{1}=e_{2}, \quad \beta_{2}=e_{3}, \quad \beta_{3}=e_{4}, \quad \beta_{4}=e_{5},
$$

and, via the isomorphism $T \cong \Lambda^{3} T$, another element $\tilde{\beta}$, given by

$$
\tilde{\beta}_{1}=e_{345}, \quad \tilde{\beta}_{2}=-e_{245}, \quad \tilde{\beta}_{3}=e_{235}, \quad \tilde{\beta}_{4}=-e_{234}
$$

The isomorphism i also induces an equivariant map

$$
j=i \wedge i: V \otimes V \rightarrow \Lambda^{2} T
$$

inducing in turn an element ϵ of \mathcal{L} with components

$$
\epsilon_{k}=\left(a_{1} \beta_{1}+a_{2} \beta_{2}+a_{3} \beta_{3}+a_{4} \beta_{4}\right) \wedge \beta_{k} .
$$

We have two natural invariant contractions $V \otimes V \rightarrow \mathbb{R}$, namely the usual scalar product \cdot and a skew-symmetric bilinear form σ, given by

$$
v_{1} \otimes v_{4}-v_{4} \otimes v_{1}-v_{2} \otimes v_{3}+v_{3} \otimes v_{2}
$$

The corresponding contractions $m_{*}(\alpha, \beta)$ will be denoted by $\alpha \beta$, and $\sigma(\alpha, \beta)$ respectively. We shall also indicate the wedge product by juxtaposition, as in $a b \sigma(a, b)$ instead of $a b \wedge \sigma(a, b)$.

Proposition 17. Let $L=\{a, b, \beta, \epsilon\}$, and $B=\{\cdot, \sigma\}$. Then Algorithm 16 yields a complete set of generators for the vector space of invariant forms.

Proof. Applying Algorithm 16, we obtain the set of generators appearing in Table 1. By Theorem 12, it suffices to compute the dimension of $\Lambda^{\mathrm{U}(2)}$ and $\Lambda^{\mathrm{U}(1) \cdot \mathrm{U}(1)}$, where $\mathrm{U}(1) \cdot \mathrm{U}(1)$ is the principal stabilizer. The result of this computation is summarized in the following tables:

| $p \backslash q$ | 0,4 | 1,3 | 2 | $p \backslash q$ | 0,4 | 1,3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0,4 | 1 | 0 | 1 | 0,4 | 2 | |
| 1,3 | 0 | 2 | 0 | 1,3 | 2 | 6 |
| 2 | 1 | 0 | 4 | 2 | 2 | 8 |

Notice that each element appearing in Table 1 vanishes at the origin of V if and only if it contains an a or an ϵ. Using this fact, it is straightforward to check that Theorem 12 is satisfied.

7.2. Calabi-Yau cones

The examples of Section 1 can be regarded either as Calabi-Yau or hyper-Kähler metrics, as in four dimensions the two notions agree. Not so in eight dimensions: indeed, a Calabi-Yau structure on an 8 -manifold is the special geometry defined by two closed forms ω, Ψ which, at each point, have the form

$$
\begin{align*}
& \omega=e^{12}+e^{34}+e^{56}+e^{78}, \\
& \Psi=\left(e^{1}+i e^{2}\right) \wedge\left(e^{3}+i e^{4}\right) \wedge\left(e^{5}+i e^{6}\right) \wedge\left(e^{7}+i e^{8}\right), \tag{35}
\end{align*}
$$

where e^{1}, \ldots, e^{8} is a basis of 1 -forms. By contrast, a hyper-Kähler structure on an 8 -manifold is the special geometry defined by three closed forms $\omega_{1}, \omega_{2}, \omega_{3}$ satisfying

$$
\begin{equation*}
\omega_{1}=e^{12}+e^{34}+e^{56}+e^{78}, \quad \omega_{2}=e^{13}+e^{42}+e^{57}+e^{86}, \quad \omega_{3}=e^{14}+e^{23}+e^{58}+e^{67} \tag{36}
\end{equation*}
$$

at each point, where again e^{1}, \ldots, e^{8} is a basis of 1 -forms. One can relate the two geometries by setting, for example,

$$
\begin{equation*}
\omega=\omega_{1}, \quad \Psi=\frac{1}{2}\left(\omega_{2} \wedge \omega_{2}-\omega_{3} \wedge \omega_{3}\right)+i \omega_{2} \wedge \omega_{3} \tag{37}
\end{equation*}
$$

reflecting the fact that hyper-Kähler manifolds are Calabi-Yau.
There is a correspondence, described in [2], between conical metrics with special holonomy and special geometries in one dimension less. In particular, conical hyper-Kähler structures are related to 3-Sasaki structures in seven dimensions. Indeed, a 3-Sasaki structure on a 7 -manifold M can be defined by three contact forms $\eta_{1}, \eta_{2}, \eta_{3}$ such that the closed forms

$$
\omega_{i}=\eta_{i} \wedge r \mathrm{~d} r-\frac{1}{2} r^{2} \mathrm{~d} \eta_{i}
$$

define a conical hyper-Kähler structure on $M \times \mathbb{R}_{+}$, where r is a coordinate on \mathbb{R}_{+}.
We now rephrase a well-known result in our language.
Proposition 18. The 1 -forms

$$
\begin{equation*}
\eta^{1}=\frac{1}{2} \sigma(a, b), \quad \eta^{2}=a \beta, \quad \eta^{3}=\sigma(a, \beta) \tag{38}
\end{equation*}
$$

define a 3-Sasaki structure on the unit sphere bundle $\mathbb{S}_{1} \subset T \mathbb{C P}^{2}$. Accordingly, the complement of the zero section in $T \mathbb{C P}^{2}$ admits a conical hyper-Kähler structure, given by

$$
\begin{aligned}
& \omega_{1}=-\frac{1}{4} \sigma(b, b)+\frac{1}{4} a a \sigma(\beta, \beta)+\frac{1}{2} \sigma(a, \epsilon), \quad \omega_{2}=-\frac{1}{2} a a^{\frac{1}{2}} b \beta-\frac{1}{2} a a^{-\frac{1}{2}} a b a \beta, \\
& \omega_{3}=-\frac{1}{2} a a^{\frac{1}{2}} \sigma(b, \beta)-\frac{1}{2} a a^{-\frac{1}{2}} a b \sigma(a, \beta) .
\end{aligned}
$$

Proof. Let \mathbb{S}_{r} be the sphere bundle defined by the equation $a a=r^{2}$. We can extend the 1 -forms η^{i} to the union of the \mathbb{S}_{r} by

Table 1
The dictionary of invariant forms on $T \mathbb{C P}^{2}$

p, q	Generators of $\Omega^{q}\left(V, \Lambda^{p} T\right)^{\mathrm{U}(2)}$
0,1	$a b, \sigma(a, b)$
1,0	$a \beta, \sigma(a, \beta)$
0, 2	$\sigma(b, b), a b \sigma(a, b)$
1,1	$b \beta, \sigma(b, \beta), a b a \beta, a b \sigma(a, \beta), \sigma(a, b) a \beta, \sigma(a, b) \sigma(a, \beta)$
2, 0	$\sigma(\beta, \beta), \sigma(a, \epsilon)$
0, 3	$a b \sigma(b, b), \sigma(a, b) \sigma(b, b)$
1,2	$\begin{aligned} & a b b \beta, a b \sigma(b, \beta), \sigma(a, b) b \beta, \sigma(a, b) \sigma(b, \beta), a \beta \sigma(b, b), \sigma(a, \beta) \sigma(b, b), a b \sigma(a, b) a \beta, \\ & \quad a b \sigma(a, b) \sigma(a, \beta) \end{aligned}$
2,1	$b \epsilon, \sigma(b, \epsilon), a b \sigma(\beta, \beta), a b \sigma(a, \epsilon), \sigma(a, b) \sigma(\beta, \beta), \sigma(a, b) \sigma(a, \epsilon), \sigma(a, \beta) b \beta, \sigma(a, \beta) \sigma(b, \beta)$
3, 0	$a \tilde{\beta}, \sigma(a, \tilde{\beta})$
0, 4	$\sigma(b, b) \sigma(b, b)$
1, 3	$\sigma(b, b) b \beta, \sigma(b, b) \sigma(b, \beta), a b \sigma(a, b) b \beta, a b \sigma(a, b) \sigma(b, \beta), a b a \beta \sigma(b, b), a b \sigma(a, \beta) \sigma(b, b)$
2, 2	$\begin{aligned} & \sigma(b, b) \sigma(\beta, \beta), b \beta b \beta, b \beta \sigma(b, \beta), \sigma(b, \beta) \sigma(b, \beta), a b b \epsilon, a b \sigma(b, \epsilon), \sigma(a, b) b \epsilon \\ & \quad \sigma(a, b) \sigma(b, \epsilon), \sigma(a, \epsilon) \sigma(b, b), a b \sigma(a, b) \sigma(\beta, \beta), a b \sigma(a, b) \sigma(a, \epsilon), a b \sigma(a, \beta) b \beta \end{aligned}$
3,1	$b \tilde{\beta}, \sigma(b, \tilde{\beta}), a b a \tilde{\beta}, a b \sigma(a, \tilde{\beta}), \sigma(a, b) a \tilde{\beta}, \sigma(a, b) \sigma(a, \tilde{\beta})$
4, 0	$\beta \tilde{\beta}$
1, 4	$a b \sigma(b, b) b \beta, a b \sigma(b, b) \sigma(b, \beta)$
2, 3	$\begin{aligned} & \sigma(b, b) b \epsilon, \sigma(b, b) \sigma(b, \epsilon), a b \sigma(a, b) b \epsilon, a b \sigma(a, b) \sigma(b, \epsilon) \\ & \quad a b \sigma(b, b) \sigma(\beta, \beta), a b b \beta b \beta, a b b \beta \sigma(b, \beta), \sigma(a, b) \sigma(b, b) \sigma(\beta, \beta) \end{aligned}$
3, 2	$b \beta b \epsilon, b \beta \sigma(b, \epsilon), \sigma(b, \beta) \sigma(b, \epsilon), a b b \tilde{\beta}, a b \sigma(b, \tilde{\beta}), a \tilde{\beta} \sigma(b, b), a b \sigma(a, b) a \tilde{\beta}, a b \sigma(a, b) \sigma(a, \tilde{\beta})$
4,1	$a b \beta \tilde{\beta}, \sigma(a, b) \beta \tilde{\beta}$
2, 4	$\sigma(b, b) \sigma(b, b) \sigma(\beta, \beta), a b \sigma(b, b) b \epsilon$
3, 3	$\sigma(b, b) b \tilde{\beta}, \sigma(b, b) \sigma(b, \tilde{\beta}), a b b \beta b \epsilon, a b b \beta \sigma(b, \epsilon), a b \sigma(b, \beta) \sigma(b, \epsilon), \sigma(a, b) b \beta b \epsilon$
4,2	$\sigma(b, b) \beta \tilde{\beta}, a b \sigma(a, b) \beta \tilde{\beta}$
3, 4	$\sigma(b, b) b \beta b \epsilon, a b \sigma(b, b) \sigma(b, \tilde{\beta})$
4, 3	$b \beta b \beta b \epsilon, b \beta b \beta \sigma(b, \epsilon)$
4, 4	$\beta \tilde{\beta} \sigma(b, b) \sigma(b, b)$

$$
\eta^{1}=\frac{1}{2 r^{2}} \sigma(a, b), \quad \eta^{2}=\frac{1}{r} a \beta, \quad \eta^{3}=\frac{1}{r} \sigma(a, \beta)
$$

Notice that these forms are constant along the radial direction; so, we can consistently identify $\mathbb{S}_{1} \times \mathbb{R}_{+}$with the complement of the zero section in $T \mathbb{C P}^{2}$. Since the η_{i} are invariant under the homogeneous action of $\mathrm{SU}(3)$, we can work at a point of \mathbb{S}_{r}, where we can assume $a=(r, 0,0,0)$. Then

$$
\eta_{1}=\frac{1}{2 r} b_{4}, \quad \eta_{2}=\beta_{1}, \quad \eta_{3}=\beta_{4}
$$

Moreover $b_{1}=0$ on \mathbb{S}_{r}. By Table 2, we obtain

$$
\begin{aligned}
\left.\mathrm{d} \eta^{1}\right|_{\mathbb{S}_{r}} & =\frac{1}{r^{2}} b_{32}+\beta_{23}-2 \beta_{14},\left.\quad \mathrm{~d} \eta^{2}\right|_{\mathbb{S}_{r}}=\frac{1}{r} b_{3} \beta_{3}+\frac{1}{r} b_{2} \beta_{2}+\frac{1}{r} b_{4} \beta_{4} \\
\left.\mathrm{~d} \eta^{3}\right|_{\mathbb{S}_{r}} & =\frac{1}{r} b_{3} \beta_{2}+\frac{1}{r} \beta_{3} b_{2}+\frac{1}{r} \beta_{1} b_{4} .
\end{aligned}
$$

Thus, the η^{i} are contact forms, and the associated symplectic forms are

$$
\begin{aligned}
& \omega_{1}=-\frac{1}{2} b_{32}-\frac{1}{2} r^{2} \beta_{23}+r^{2} \beta_{14}-\frac{1}{2} b_{14}=-\frac{1}{4} \sigma(b, b)+\frac{1}{4} a a \sigma(\beta, \beta)+\frac{1}{2} \sigma(a, \epsilon) \\
& \omega_{2}=-\frac{1}{2} r\left(b_{3} \beta_{3}+b_{2} \beta_{2}+b_{4} \beta_{4}\right)-r b_{1} \beta_{1}=-\frac{1}{2} a a^{\frac{1}{2}} b \beta-\frac{1}{2} a a^{-\frac{1}{2}} a b a \beta \\
& \omega_{3}=-\frac{1}{2} r\left(b_{3} \beta_{2}+\beta_{3} b_{2}+\beta_{1} b_{4}\right)-r b_{1} \beta_{4}=-\frac{1}{2} a a^{\frac{1}{2}} \sigma(b, \beta)-\frac{1}{2} a a^{-\frac{1}{2}} a b \sigma(a, \beta) .
\end{aligned}
$$

Table 2
Action of d on invariant forms of degree $1,2,3$

$a a$	$2 a b$
$a b$	0
$\sigma(a, b)$	$-2 \sigma(a, \epsilon)+\sigma(b, b)-a a \sigma(\beta, \beta)$
$a \beta$	$b \beta$
$\sigma(a, \beta)$	$\sigma(b, \beta)$
$\sigma(b, b)$	$2 a b \sigma(\beta, \beta)+2 \sigma(a, \beta) b \beta+2 \sigma(b, \epsilon)$
$b \beta$	0
$\sigma(b, \beta)$	0
$\sigma(\beta, \beta)$	0
$\sigma(a, \epsilon)$	$\sigma(a, \beta) b \beta+\sigma(b, \epsilon)$
$a b \sigma(a, b)$	$2 a b \sigma(a, \epsilon)-a b \sigma(b, b)+a a a b \sigma(\beta, \beta)$
$a b a \beta$	$-a b b \beta$
$a b \sigma(a, \beta)$	$-a b \sigma(b, \beta)$
$\sigma(a, b) a \beta$	$-\sigma(a, b) b \beta+a \beta \sigma(b, b)-2 a a \sigma(a, \tilde{\beta})$
$\sigma(a, b) \sigma(a, \beta)$	$-\sigma(a, b) \sigma(b, \beta)+\sigma(a, \beta) \sigma(b, b)+2 a a a \tilde{\beta}$
$a \tilde{\beta}$	$b \tilde{\beta}$
$\sigma(a, \tilde{\beta})$	$\sigma(b, \tilde{\beta})$
$b \epsilon$	$-b \beta b \beta$
$\sigma(b, \epsilon)$	$-b \beta \sigma(b, \beta)$
$a b \sigma(b, b)$	$-2 a b \sigma(a, \beta) b \beta-2 a b \sigma(b, \epsilon)$
$a b b \beta$	0
$a b \sigma(b, \beta)$	0
$a b \sigma(\beta, \beta)$	0
$a b \sigma(a, \epsilon)$	$-a b \sigma(a, \beta) b \beta-a b \sigma(b, \epsilon)$
$\sigma(a, b) \sigma(b, b)$	$-\frac{3}{2} a a \sigma(b, b) \sigma(\beta, \beta)-a a b \beta b \beta+3 a b \sigma(a, b) \sigma(\beta, \beta)-2 a b b \epsilon$
$\sigma(a, b) b \beta$	$-2 \sigma(a, b) \sigma(b, \epsilon)-\sigma(a, \epsilon) \sigma(b, b)+\sigma(b, b) \sigma(b, b)$
$\sigma(a, b) \sigma(b, \beta)$	$-4 a a \sigma(b, \tilde{\beta})+2 a b \sigma(a, \tilde{\beta})-2 \sigma(a, b) a \tilde{\beta}+\sigma(b, b) b \beta$
$\sigma(a, b) \sigma(\beta, \beta)$	$4 a a b \tilde{\beta}-2 a b a \tilde{\beta}-2 \sigma(a, b) \sigma(a, \tilde{\beta})+\sigma(b, b) \sigma(b, \beta)$
$\sigma(a, b) \sigma(a, \epsilon)$	$3 a a \beta \tilde{\beta}+\sigma(b, b) \sigma(\beta, \beta)$
$a \beta \sigma(b, b)$	$-\frac{1}{4} a a \sigma(b, b) \sigma(\beta, \beta)-\frac{1}{2} a a b \beta b \beta+\frac{1}{2} a b \sigma(a, b) \sigma(\beta, \beta)-a b b \epsilon$
$\sigma(a, \beta) \sigma(b, b)$	$-\sigma \sigma(a, b) \sigma(b, \epsilon)+\frac{3}{2} \sigma(a, \epsilon) \sigma(b, b)+\frac{1}{2} a a^{2} \beta \tilde{\beta}$
$\sigma(a, \beta) b \beta$	$-2 a a \sigma(b, \tilde{\beta})+6 a b \sigma(a, \tilde{\beta})-2 \sigma(a, b) a \tilde{\beta}+\sigma(b, b) b \beta$
$\sigma(a, \beta) \sigma(b, \beta)$	$2 a a b \tilde{\beta}-6 a b a \tilde{\beta}-2 \sigma(a, b) \sigma(a, \tilde{\beta})+\sigma(b, b) \sigma(b, \beta)$
$a b \sigma(a, b) a \beta$	$b \beta \sigma(b, \beta)$
$a b \sigma(a, b) \sigma(a, \beta)$	$\sigma(b, \beta) \sigma(b, \beta)$
	$2 a a a b \sigma(a, \tilde{\beta})+a b \sigma(a, b) b \beta-a b a \beta \sigma(b, b)$
	$-2 a a a b a \tilde{\beta}+a b \sigma(a, b) \sigma(b, \beta)-a b \sigma(a, \beta) \sigma(b, b)$

By construction, or by direct computation using Table 2, the ω_{i} are closed. It only remains to find a local basis of 1 -forms satisfying Eq. (36); at $a=(r, 0,0,0)$, one such basis is given by

$$
-\frac{1}{\sqrt{2}} b_{3}, \quad \frac{1}{\sqrt{2}} b_{2}, \quad \frac{1}{\sqrt{2}} r \beta_{3}, \quad \frac{1}{\sqrt{2}} r \beta_{2}, \quad r \beta_{1}, \quad r \beta_{4}, \quad b_{1}, \quad-\frac{1}{2} b_{4}
$$

The manifold $T \mathbb{C P}^{2}$ admits other, complete hyper-Kähler metrics (see [7,4,11]), but we shall focus on the Calabi-Yau point of view instead. One can rephrase Proposition 18 by saying that the complement of the zero section in $T \mathbb{C P}^{2}$ has a three-parameter family of conical symplectic structures

$$
\begin{equation*}
\omega=A \omega_{1}+B \omega_{2}+C \omega_{3} \tag{39}
\end{equation*}
$$

and for each ω in this family there is a conical Calabi-Yau structure which has ω as its Kähler form. We shall use our list of invariant forms to determine other Calabi-Yau structures (not necessarily conical) defined on a neighbourhood of \mathbb{S}_{1} in $T \mathbb{C P}^{2}$ whose Kähler form lies in the family (39).

The starting observation is the following: if M is a Calabi-Yau manifold of dimension 8, each oriented hypersurface inherits an $\mathrm{SU}(3)$-structure, defined by differential forms F, Ω and α which at each point satisfy

$$
F=e^{12}+e^{34}+e^{56}, \quad \Omega=\left(e^{1}+i e^{2}\right) \wedge\left(e^{3}+i e^{4}\right) \wedge\left(e^{5}+i e^{6}\right), \quad \alpha=e^{7} ;
$$

moreover, F and $\alpha \wedge \Omega$ are closed [10]. In the real analytic category, the converse also holds. If one further imposes that the underlying almost-contact structure be contact, i.e. $\mathrm{d} \alpha=-2 F$, this result can be strengthened as follows:

Theorem 19 ([9]). Let (M, α, F, Ω) be a 7-manifold with an $\mathrm{SU}(3)$-structure such that

$$
\begin{equation*}
\mathrm{d} \alpha=-2 F, \quad \mathrm{~d}(\alpha \wedge \Omega)=0 \tag{40}
\end{equation*}
$$

Then a neighbourhood of $M \times\{1\}$ in $M \times \mathbb{R}_{+}$has a Calabi-Yau structure (ω, Ψ) such that

$$
\omega=\alpha \wedge r \mathrm{~d} r-\frac{1}{2} r^{2} \mathrm{~d} \alpha .
$$

In fact, an analogue of this theorem holds in every odd dimension, and five-dimensional examples of structures of this type have been described in [12]. Also, solutions of Eq. (40) appear to be related to weakly integrable generalized G_{2}-structures [21,14], although there does not seem to be any such structure on \mathbb{S}_{1}.

We can now prove the main result of this section. Notice that we are representing forms on \mathbb{S}_{1} by pulling back forms on $T^{*} \mathbb{C P}^{2}$, so that, say, the radial component of a 1 -form has no effect on the formulae.

Theorem 20. The seven-dimensional manifold \mathbb{S}_{1} has a two-parameter family of $\operatorname{SU}(3)$-structures that are solutions of (40) given by

$$
\begin{aligned}
& \alpha(B, C)=\frac{1}{2} \sigma(a, b)+B a \beta+C \sigma(a, \beta), \\
& F(B, C)=\frac{1}{2} \sigma(a, \epsilon)-\frac{1}{4} \sigma(b, b)+\frac{1}{4} \sigma(\beta, \beta)-\frac{1}{2} B b \beta-\frac{1}{2} C \sigma(b, \beta), \\
& \Omega(B, C)=\frac{1}{4 \sqrt{\left(B^{2}+C^{2}\right)\left(1+B^{2}+C^{2}\right)}}\left(\Omega^{+}+i \Omega^{-}\right),
\end{aligned}
$$

where B, C are constants, at least one of which is not zero, and

$$
\begin{aligned}
\Omega^{+}= & -2 B b \epsilon-2 B\left(B^{2}+C^{2}+1\right) \sigma(a, \beta) \sigma(b, \beta)+2 C \sigma(a, \beta) b \beta+4\left(C^{2}+1\right)\left(B^{2}+C^{2}\right) \sigma(a, \tilde{\beta}) \\
& -B\left(B^{2}+C^{2}\right) \sigma(a, b) \sigma(\beta, \beta)-2 C\left(1+B^{2}+C^{2}\right) \sigma(b, \epsilon) \\
& -\left(B^{2}+C^{2}\right) \sigma(a, b) b \beta+4 C B\left(B^{2}+C^{2}\right) a \tilde{\beta}, \\
\Omega^{-}= & -\left(B^{2}+C^{2}\right) \sigma(a, b) \sigma(b, \beta)+2 C \sigma(a, \beta) \sigma(b, \beta)-2 B \sigma(b, \epsilon) \\
& +2 B\left(1+B^{2}+C^{2}\right) \sigma(a, \beta) b \beta-C\left(B^{2}+C^{2}\right) \sigma(a, b) \sigma(\beta, \beta) \\
& +2 C\left(1+B^{2}+C^{2}\right) b \epsilon-4 C B\left(B^{2}+C^{2}\right) \sigma(a, \tilde{\beta})-4\left(1+B^{2}\right)\left(B^{2}+C^{2}\right) a \tilde{\beta} .
\end{aligned}
$$

Any two distinct structures in this family have underlying metrics in different conformal classes.
Proof. Eq. (40) is proved using Table 2. To check that the forms actually define an $\mathrm{SU}(3)$-structure, we can work at a point where $a=(1,0,0,0)$. Suppose for the moment that $C \neq 0$. Setting $\delta=B \beta_{4}-C \beta_{1}, \gamma=2 \beta_{4}-C b_{4}$, we compute

$$
\begin{aligned}
\Omega= & \frac{1}{\sqrt{2\left(B^{2}+C^{2}\right)\left(1+B^{2}+C^{2}\right)}}\left(b_{2}+B \beta_{3}+C \beta_{2}+i\left(b_{3}+\beta_{3} C-\beta_{2} B\right)\right) \\
& \wedge \frac{1}{\sqrt{2}}\left(\beta_{2}-i \beta_{3}\right) \wedge\left(-\frac{B}{C} \delta+\frac{B^{2}+C^{2}}{2 C} \gamma+i\left(1+B^{2}+C^{2}\right) \delta\right)
\end{aligned}
$$

and

$$
F=\frac{1}{C} \gamma \wedge \delta+b_{23}-\beta_{23}-B\left(b_{2} \beta_{2}+b_{3} \beta_{3}\right)+C\left(b_{2} \beta_{3}-b_{3} \beta_{2}\right) .
$$

Thus, the forms α, F and Ω are in standard form with respect to the basis e^{1}, \ldots, e^{7} given by

$$
\begin{aligned}
& e^{1}=\left(b_{2}+B \beta_{3}+C \beta_{2}\right) / \sqrt{2}, \quad e^{2}=\left(b_{3}+\beta_{3} C-\beta_{2} B\right) / \sqrt{2}, \\
& e^{3}=\sqrt{\left(1+B^{2}+C^{2}\right) / 2} \beta_{2}, \quad e^{4}=-\sqrt{\left(1+B^{2}+C^{2}\right) / 2} \beta_{3}, \\
& e^{5}=-\frac{B}{C \sqrt{\left(B^{2}+C^{2}\right)\left(1+B^{2}+C^{2}\right)}} \delta+\frac{1}{2 C} \sqrt{\frac{B^{2}+C^{2}}{\left(B^{2}+C^{2}+1\right)}} \gamma, \\
& e^{6}=\sqrt{\frac{B^{2}+C^{2}+1}{B^{2}+C^{2}}} \delta, \quad e^{7}=\alpha,
\end{aligned}
$$

and we have proved the statement for $C \neq 0$. Now fix $B \neq 0$, so that $\Omega(B, 0)$ can be obtained as the limit

$$
\Omega\left(B+\frac{1}{n}, \frac{1}{n}\right) \longrightarrow^{n \rightarrow+\infty} \Omega(B, 0),
$$

and consider the associated sequence of coframes constructed as above. It is easy to verify that this sequence converges to a limit coframe e^{1}, \ldots, e^{7}; hence, by continuity, the forms $\alpha(B, 0), F(B, 0), \Omega(B, 0)$ define an $\mathrm{SU}(3)$-structure.

Finally, the statement about the underlying Riemannian metric follows from the fact that since e^{1}, \ldots, e^{7} is an orthonormal frame,

$$
B=\frac{\left\langle b_{2}, \beta_{2}\right\rangle}{\left\langle b_{2}, b_{2}\right\rangle}, \quad C=\frac{\left\langle b_{2}, \beta_{3}\right\rangle}{\left\langle b_{2}, b_{2}\right\rangle} .
$$

The problem with the case $B=0=C$ is that the map

$$
(B, C) \rightarrow \Omega(B, C)
$$

is not continuous in the origin. However, we can declare arbitrarily that

$$
\Omega(0,0)=\lim _{n \rightarrow+\infty} \Omega\left(\frac{1}{n}, 0\right)
$$

and obtain a valid solution of (40), given explicitly by

$$
\begin{aligned}
& \alpha=\frac{1}{2} \sigma(a, b), \quad F=\frac{1}{2} \sigma(a, \epsilon)-\frac{1}{4} \sigma(b, b)+\frac{1}{4} \sigma(\beta, \beta), \\
& \Omega=-\frac{1}{2} \sigma(a, \beta) \sigma(b, \beta)-\frac{1}{2} b \epsilon+\frac{1}{2} i(-\sigma(b, \epsilon)+\sigma(a, \beta) b \beta) .
\end{aligned}
$$

This $\operatorname{SU}(3)$-structure is compatible with the 3-Einstein-Sasaki structure of Proposition 18. Indeed, by (37) a Calabi-Yau structure (ω, Ψ) is associated with the conical hyper-Kähler structure, and the forms F and $\alpha \wedge \Omega$ coincide with the restriction to \mathbb{S}_{1} of the forms ω and $i \Psi$.

The 3-Einstein-Sasaki structure on \mathbb{S}_{1} also induces a two-parameter family of solutions of (40), consisting of $\mathrm{SU}(3)$-structures with the same underlying metric. As a consequence of the last part of Theorem 20, the intersection of the two families consists only of the structure described above.

From Theorems 19 and 20, we immediately obtain
Corollary 21. For each conical symplectic form $\omega=\omega_{1}+B \omega_{2}+C \omega_{3}$ (with ω_{i} as defined in Proposition 18), there is a neighbourhood of \mathbb{S}_{1} in $T \mathbb{C P}^{2}$ carrying a Calabi-Yau metric whose Kähler form is ω. The metrics can be chosen in different conformal classes.

Considering the complexity of Table 1, we expect $T \mathbb{C P}^{2}$ to have other special geometries, beside the examples of this section. Indeed, arbitrary choices were involved in the construction of Theorem 20.

Acknowledgements

This paper is based in part on the author's Tesi di perfezionamento [8], under the supervision of S. Salamon; to him goes the author's gratitude. Thanks are also due to P. Gauduchon and A. Swann for their interest and comments on said thesis.

References

[1] M.F. Atiyah, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. A362 (1978) $425-461$.
[2] C. Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (3) (1993) 509-521.
[3] C. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C^{++}programming language, J. Symbolic Comput. 33 (1) (2002) 1-12.
[4] O. Biquard, P. Gauduchon, Hyper-Kähler metrics on cotangent bundles of Hermitian symmetric spaces, in: Geometry and Physics (Aarhus, 1995), in: Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 287-298.
[5] G.E. Bredon, Introduction to compact transformation groups, in: Pure and Applied Mathematics, vol. 46, Academic Press, 1972.
[6] R. Bryant, S. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) $829-850$.
[7] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (2) (1979) 269-294.
[8] D. Conti, Special holonomy and hypersurfaces, Ph.D. Thesis, Scuola Normale Superiore, Pisa, 2005.
[9] D. Conti, A. Fino, Calabi-Yau cones from contact reduction (in preparation).
[10] D. Conti, S. Salamon, Generalized Killing spinors in dimension 5, Trans. Amer. Math. Soc. 359 (11) (2007) 5319-5343.
[11] A. Dancer, A. Swann, Hyper-Kähler metrics of cohomogeneity one, J. Geom. Phys. 21 (3) (1997) 218-230.
[12] L.C. de Andres, M. Fernandez, A. Fino, L. Ugarte, Contact 5-manifolds with SU(2)-structure, arXiv:0706.0386, 2007.
[13] T. Eguchi, A.J. Hanson, Asymptotically flat selfdual solutions to Euclidean gravity, Phys. Lett. B 74 (249) (1978).
[14] A. Fino, A. Tomassini, Generalized G_{2}-manifolds and $\mathrm{SU}(3)$-structures. arXiv:math/0609820, 2006.
[15] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1) (1987) 59-126.
[16] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, 1963.
[17] P.B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (3) (1989) 665-683.
[18] K. Lake, P. Musgrave, GRTensor, a system for making the classical functions of general relativity elementary, in: Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics (Waterloo, ON, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 317-320.
[19] S. Salamon, Riemannian geometry and holonomy groups, in: Pitman Research Notes in Mathematics, vol. 201, Longman, Harlow, 1989.
[20] S. Salamon, Explicit metrics with holonomy G_{2}, Sem. Math. Sci. 30 (2004) 50-58. Notes by D. Conti and A. Gambioli for Proc. UK-Japan Winter School 2004.
[21] F. Witt, Generalised G_{2}-manifolds, Comm. Math. Phys. 265 (2006) 275.

[^0]: E-mail address: diego.conti@unimib.it.

